31 research outputs found
A Systematic Study on Energy Dependence of Quasi-Periodic Oscillation Frequency in GRS 1915+105
Systematically studying all the RXTE/PCA observations for GRS 1915+105 before
November 2010, we have discovered three additional patterns in the relation
between Quasi-Periodic Oscillation (QPO) frequency and photon energy, extending
earlier outcomes reported by Qu et al. (2010). We have confirmed that as QPO
frequency increases, the relation evolves from the negative correlation to
positive one. The newly discovered patterns provide new constraints on the QPO
models
Agroforesterie et services écosystémiques en zone tropicale
Respectueux de l’environnement et garantissant une sécurité alimentaire soutenue par la diversification des productions et des revenus qu’ils procurent, les systèmes agroforestiers apparaissent comme un modèle prometteur d’agriculture durable dans les pays du Sud les plus vulnérables aux changements globaux. Cependant, ces systèmes agroforestiers ne peuvent être optimisés qu’à condition de mieux comprendre et de mieux maîtriser les facteurs de leurs productions. L’ouvrage présente un ensemble de connaissances récentes sur les mécanismes biophysiques et socio-économiques qui sous-tendent le fonctionnement et la dynamique des systèmes agroforestiers. Il concerne, d’une part les systèmes agroforestiers à base de cultures pérennes, telles que cacaoyers et caféiers, de régions tropicales humides en Amérique du Sud, en Afrique de l’Est et du Centre, d’autre part les parcs arborés et arbustifs à base de cultures vivrières, principalement de céréales, de la région semi-aride subsaharienne d’Afrique de l’Ouest. Il synthétise les dernières avancées acquises grâce à plusieurs projets associant le Cirad, l’IRD et leurs partenaires du Sud qui ont été conduits entre 2012 et 2016 dans ces régions. L’ensemble de ces projets s’articulent autour des dynamiques des systèmes agroforestiers et des compromis entre les services de production et les autres services socio-écosystémiques que ces systèmes fournissent
Temporal microbial response to wetting-drying cycles in soils within and outside the influence of a shrub in the Sahel
Piliostigma reticulatum is a native woody shrub found in cropped fields in the Sahel and has been shown to increase crop productivity and soil quality. Frequently occurring drying and rewetting cycles (DRW) may alter the soil quality beneath these shrubs. We investigated the effect of DRW cycles on microbial community in soil beneath and outside the P. reticulatum canopy and the roles of this shrub in the adaptation of the microbial community to abiotic stress. Soils were incubated in a climate controlled chamber for 45 days, after exposure to 10 consecutive days of DRW cycles at 75% of water holding capacity (WHC). Basal respiration, ?-glucosidase activity, microbial biomass carbon (MB C ), and available nitrogen ( NH+4 ; 3NO-3 ) were measured at 2, 30, and 45 days after soil exposed to the DRW cycles. MB C increased significantly two days after the DRW cycles and was greater for soil beneath the shrub canopy compared with soil outside the shrub canopy. PCA analysis based on basal respiration, microbial biomass carbon, available nitrogen, and bĂŞta-Glucosidase activity resulted in a tight clustering in the beneath shrub soil samples. Soils incubated for more than 30 days after DRW cycles had higher available nitrogen content than soils incubated for less than 30 days. Soil from beneath the shrub canopy significantly improved soil resilience based on bĂŞta-glucosidase activity. Soil from beneath the shrub canopy also had higher nutrient levels and greater microbial activity even when subjected to DRW cycles, potentially improving the ability of crops to withstand in-season drought when they are adjacent to shrubs. The work should bring our scientific community into a more comprehensive assessment of potential effects of a crop-shrub intercropping that may allow for increased crop yields in semi-arid ecosystems under drought conditions
The native shrub, Piliostigma reticulatum, as an ecological “resource island” for mango trees in the Sahel
African farmers are increasingly adopting sustainable agricultural practices including use of native shrub
intercropping approaches. In one village of Sénégal (near Thiès) it was reported that farmers planted
mango (Mangifera indica) seedlings within the canopies of a native shrub (Piliostigma reticulatum).
Anecdotal information and qualitative observations suggested that the presence of P. reticulatum
promoted soil quality and a competitive advantage for establishing mango plantations. We hypothesized
that soil chemical and microbial properties of mango rhizosphere soil growing in the presence of P.
reticulatum would be significantly improved over soils associated with mango growing outside the
influence of P. reticulatum. The results showed that mango-shrub interplanting significantly lowered pH,
and increased arbuscular mycorrhizal fungi (AMF) colonization of mango roots, enzyme activities, and
microbial biomass compared to mango alone. Phylogenetic analyses by PCR-denaturing gradient gel
electrophoresis (DGGE) showed that community structures of fungi, bacteria, and bacterial genes
responsible for denitrification (nirK) of the soil from the rooting zone of the mango-shrub intercropping
system were distinct from all other soil outside the influence of P. reticulatum. It is concluded that P.
reticulatum enhances soil biological functioning and that there is a synergistic effect of intercropping
mango with the native shrub, P. reticulatum, in soil quality with a more diverse community, greater AMF
infection rates, and greater potential to perform decomposition and mineralize nutrients.African farmers are increasingly adopting sustainable agricultural practices including use of native shrub
intercropping approaches. In one village of Sénégal (near Thiès) it was reported that farmers planted
mango (Mangifera indica) seedlings within the canopies of a native shrub (Piliostigma reticulatum).
Anecdotal information and qualitative observations suggested that the presence of P. reticulatum
promoted soil quality and a competitive advantage for establishing mango plantations. We hypothesized
that soil chemical and microbial properties of mango rhizosphere soil growing in the presence of P.
reticulatum would be significantly improved over soils associated with mango growing outside the
influence of P. reticulatum. The results showed that mango-shrub interplanting significantly lowered pH,
and increased arbuscular mycorrhizal fungi (AMF) colonization of mango roots, enzyme activities, and
microbial biomass compared to mango alone. Phylogenetic analyses by PCR-denaturing gradient gel
electrophoresis (DGGE) showed that community structures of fungi, bacteria, and bacterial genes
responsible for denitrification (nirK) of the soil from the rooting zone of the mango-shrub intercropping
system were distinct from all other soil outside the influence of P. reticulatum. It is concluded that P.
reticulatum enhances soil biological functioning and that there is a synergistic effect of intercropping
mango with the native shrub, P. reticulatum, in soil quality with a more diverse community, greater AMF
infection rates, and greater potential to perform decomposition and mineralize nutrients.African farmers are increasingly adopting sustainable agricultural practices including use of native shrub
intercropping approaches. In one village of Sénégal (near Thiès) it was reported that farmers planted
mango (Mangifera indica) seedlings within the canopies of a native shrub (Piliostigma reticulatum).
Anecdotal information and qualitative observations suggested that the presence of P. reticulatum
promoted soil quality and a competitive advantage for establishing mango plantations. We hypothesized
that soil chemical and microbial properties of mango rhizosphere soil growing in the presence of P.
reticulatum would be significantly improved over soils associated with mango growing outside the
influence of P. reticulatum. The results showed that mango-shrub interplanting significantly lowered pH,
and increased arbuscular mycorrhizal fungi (AMF) colonization of mango roots, enzyme activities, and
microbial biomass compared to mango alone. Phylogenetic analyses by PCR-denaturing gradient gel
electrophoresis (DGGE) showed that community structures of fungi, bacteria, and bacterial genes
responsible for denitrification (nirK) of the soil from the rooting zone of the mango-shrub intercropping
system were distinct from all other soil outside the influence of P. reticulatum. It is concluded that P.
reticulatum enhances soil biological functioning and that there is a synergistic effect of intercropping
mango with the native shrub, P. reticulatum, in soil quality with a more diverse community, greater AMF
infection rates, and greater potential to perform decomposition and mineralize nutrients.African farmers are increasingly adopting sustainable agricultural practices including use of native shrub
intercropping approaches. In one village of Sénégal (near Thiès) it was reported that farmers planted
mango (Mangifera indica) seedlings within the canopies of a native shrub (Piliostigma reticulatum).
Anecdotal information and qualitative observations suggested that the presence of P. reticulatum
promoted soil quality and a competitive advantage for establishing mango plantations. We hypothesized
that soil chemical and microbial properties of mango rhizosphere soil growing in the presence of P.
reticulatum would be significantly improved over soils associated with mango growing outside the
influence of P. reticulatum. The results showed that mango-shrub interplanting significantly lowered pH,
and increased arbuscular mycorrhizal fungi (AMF) colonization of mango roots, enzyme activities, and
microbial biomass compared to mango alone. Phylogenetic analyses by PCR-denaturing gradient gel
electrophoresis (DGGE) showed that community structures of fungi, bacteria, and bacterial genes
responsible for denitrification (nirK) of the soil from the rooting zone of the mango-shrub intercropping
system were distinct from all other soil outside the influence of P. reticulatum. It is concluded that P.
reticulatum enhances soil biological functioning and that there is a synergistic effect of intercropping
mango with the native shrub, P. reticulatum, in soil quality with a more diverse community, greater AMF
infection rates, and greater potential to perform decomposition and mineralize nutrients