3,403 research outputs found

    Instrument manual for the retarding ion mass spectrometer on Dynamics Explorer-1

    Get PDF
    The retarding ion mass spectrometer (RIMS) for Dynamics Explorer-1 is an instrument designed to measure the details of the thermal plasma distribution. It combines the ion temperature determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram direction. This manual provides a functional description of the RIMS, the instrument calibration, and a description of the commands which can be stored in the instrument logic to control its operation

    Boldness traits, not dominance, predict exploratory flight range and homing behaviour in homing pigeons

    Get PDF
    This study investigated whether consistent individual differences in behaviour (particularly exploratory tendency and object neophilia) were associated with the tendency to explore in free-ranging scenarios. This was tested in homing pigeons. The results showed that birds that were more likely to explore in the loft were also more likely to explore the local area during self-driven flights. When birds were released from a fixed release points, those which had explored less took more tortuous and longer routes back to the loft. This demonstrates the cost associated with lack of exploratory behaviour, and also links traits measured in laboratory scenarios to behaviour in free-ranging animals

    Analysis of two-player quantum games in an EPR setting using geometric algebra

    Get PDF
    The framework for playing quantum games in an Einstein-Podolsky-Rosen (EPR) type setting is investigated using the mathematical formalism of Clifford geometric algebra (GA). In this setting, the players' strategy sets remain identical to the ones in the classical mixed-strategy version of the game, which is then obtained as proper subset of the corresponding quantum game. As examples, using GA we analyze the games of Prisoners' Dilemma and Stag Hunt when played in the EPR type setting.Comment: 20 pages, no figure, revise

    Detecting Delamination via Nonlinear Wave Scattering in a Bonded Elastic Bar

    Full text link
    In this paper we examine the effect of delamination on wave scattering, with the aim of creating a control measure for layered waveguides of various bonding types. Previous works have considered specific widths of solitary waves for the simulations, without analysing the effect of changing the soliton parameters. We consider two multi-layered structures: one containing delamination "sandwiched" by perfect bonding and one containing delamination but "sandwiched" by soft bonding. These structures are modelled by coupled Boussinesq-type equations. Matched asymptotic multiple-scale expansions lead to coupled Ostrovsky equations in soft bonded regions and Korteweg-De Vries equations in the perfectly bonded and delaminated region. We use the Inverse Scattering Transform to predict the behaviour in the delaminated regions. In both cases, numerical analysis shows that we can predict the delamination length by changes in the wave structure, and that these changes depend upon the Full Width at Half Magnitude (FWHM) of the incident soliton. In the case of perfect bonding, we derive a theoretical prediction for the change and confirm this numerically. For the soft bonding case, we numerically identify a similar relationship using the change in amplitude. Therefore we only need to compute one curve to determine the behaviour for any incident solitary wave, creating a framework for designing measurement campaigns for rigorously testing the integrity of layered structures.Comment: 12 pages, 7 figure

    The field theory of symmetrical layered electrolytic systems and the thermal Casimir effect

    Full text link
    We present a general extension of a field-theoretic approach developed in earlier papers to the calculation of the free energy of symmetrically layered electrolytic systems which is based on the Sine-Gordon field theory for the Coulomb gas. The method is to construct the partition function in terms of the Feynman evolution kernel in the Euclidean time variable associated with the coordinate normal to the surfaces defining the layered structure. The theory is applicable to cylindrical systems and its development is motivated by the possibility that a static van der Waals or thermal Casimir force could provide an attractive force stabilising a dielectric tube formed from a lipid bilayer, an example of which are t-tubules occurring in certain muscle cells. In this context, we apply the theory to the calculation of the thermal Casimir effect for a dielectric tube of radius RR and thickness δ\delta formed from such a membrane in water. In a grand canonical approach we find that the leading contribution to the Casimir energy behaves like −kBTLκC/R-k_BTL\kappa_C/R which gives rise to an attractive force which tends to contract the tube radius. We find that κC∼0.3\kappa_C \sim 0.3 for the case of typical lipid membrane t-tubules. We conclude that except in the case of a very soft membrane this force is insufficient to stabilise such tubes against the bending stress which tend to increase the radius. We briefly discuss the role of lipid membrane reservoir implicit in the approach and whether its nature in biological systems may possibly lead to a stabilising mechanism for such lipid tubes.Comment: 28 pages, 2 figures, LaTe

    A mathematical model characterising Achilles tendon dynamics in flexion

    Get PDF
    The purpose of this study is to acquire mechanistic knowledge of the gastrocnemius muscle-Achilles tendon complex behaviour during specific movements in humans through mathematical modelling. Analysis of this muscle-tendon complex was performed to see if already existing muscle-tendon models of other parts of the body could be applied to the leg muscles, especially the gastrocnemius muscle-Achilles tendon complex, and whether they could adequately characterise its behaviour. Five healthy volunteers were asked to take part in experiments where dorsiflexion and plantar flexion of the foot were studied. A model of the Achilles tendon-gastrocnemius muscle was developed, incorporating assumptions regarding the mechanical properties of the muscle fibres and the tendinous tissue in series. Ultrasound images of the volunteers, direct measurements and additional mathematical calculations were used to parameterise the model. Ground reaction forces, forces on specific joints and moments and angles for the ankle were obtained from a Vicon 3D motion capture system. Model validation was performed from the experimental data captured for each volunteer and from reconstruction of the movements of specific trajectories of the joints, muscles and tendons involved in those movements

    Upregulation of transmembrane endothelial junction proteins in human cerebral cavernous malformations

    Full text link
    OBJECT: Cerebral cavernous malformations (CCMs) are among the most prevalent cerebrovascular malformations, and endothelial cells seem to play a major role in the disease. However, the underlying mechanisms, including endothelial intercellular communication, have not yet been fully elucidated. In this article, the authors focus on the endothelial junction proteins CD31, VE-cadherin, and occludin as important factors for functional cell-cell contacts known as vascular adhesion molecules and adherence and tight junctions. METHODS: Thirteen human CCM specimens and 6 control tissue specimens were cryopreserved and examined for the presence of VE-cadherin, occludin, and CD31 by immunofluorescence staining. Protein quantification was performed by triplicate measurements using western blot analysis. RESULTS: Immunofluorescent analyses of the CCM sections revealed a discontinuous pattern of dilated microvessels and capillaries as well as increased expression of occludin, VE-cadherin, and CD31 in the intima and in the enclosed parenchymal tissue compared with controls. Protein quantification confirmed these findings by showing upregulation of the levels of these proteins up to 2-6 times. CONCLUSIONS: A protocol enabling the molecular and morphological examination of the intercellular contact proteins in human CCM was validated. The abnormal and discontinuous pattern in these endothelial cell-contact proteins compared with control tissue explains the loose intercellular junctions that are considered to be one of the causes of CCM-associated bleeding or transendothelial oozing of erythrocytes. Despite the small number of specimens, this study demonstrates for the first time a quantitative analysis of endothelial junction proteins in human CCM

    Testing the gravitational theory with short-period stars around our Galactic Center

    Full text link
    Motion of short-period stars orbiting the supermassive black hole in our Galactic Center has been monitored for more than 20 years. These observations are currently offering a new way to test the gravitational theory in an unexplored regime: in a strong gravitational field, around a supermassive black hole. In this proceeding, we present three results: (i) a constraint on a hypothetical fifth force obtained by using 19 years of observations of the two best measured short-period stars S0-2 and S0-38 ; (ii) an upper limit on the secular advance of the argument of the periastron for the star S0-2 ; (iii) a sensitivity analysis showing that the relativistic redshift of S0-2 will be measured after its closest approach to the black hole in 2018.Comment: 4 pages, 2 figures, proceedings of the 52nd Rencontres de Moriond, Gravitation Sessio
    • …
    corecore