20 research outputs found

    The importance of changing oceanography in controlling late Quaternary carbonate sedimentation on a high-energy, tropical, oceanic ramp: north-western Australia

    No full text
    The North West Shelf is an ocean-facing carbonate ramp that lies in a warm-water setting adjacent to an arid hinterland of moderate to low relief. The sea floor is strongly affected by cyclonic storms, long-period swells and large internal tides, resulting in preferentially accumulating coarse-grained sediments. Circulation is dominated by the south-flowing, low-salinity Leeuwin Current, upwelling associated with the Indian Ocean Gyre, seaward-flowing saline bottom waters generated by seasonal evaporation, and flashy fluvial discharge. Sediments are palimpsest, a variable mixture of relict, stranded and Holocene grains. Relict intraclasts, both skeletal and lithic, interpreted as having formed during sea-level highstands of Marine Isotope Stages (MIS) 3 and 4, are now localized to the mid-ramp. The most conspicuous stranded particles are ooids and peloids, which 14C dating shows formed at 15·4-12·7 Ka, in somewhat saline waters during initial stages of post-Last Glacial Maximum (LGM) sea-level rise. It appears that initiation of Leeuwin Current flow with its relatively less saline, but oceanic waters arrested ooid formation such that subsequent benthic Holocene sediment is principally biofragmental, with sedimentation localized to the inner ramp and a ridge of planktic foraminifera offshore. Inner-ramp deposits are a mixture of heterozoan and photozoan elements. Depositional facies reflect episodic environmental perturbation by riverine-derived sediments and nutrients, resulting in a mixed habitat of oligotrophic (coral reefs and large benthic foraminifera) and mesotrophic (macroalgae and bryozoans) indicators. Holocene mid-ramp sediment is heterozoan in character, but sparse, most probably because of the periodic seaward flow of saline bottom waters generated by coastal evaporation. Holocene outer-ramp sediment is mainly pelagic, veneering shallow-water sediments of Marine Isotope Stage 2, including LGM deposits. Phosphate accumulations at ≈ 200 m. water depth suggest periodic upwelling or Fe-redox pumping, whereas enhanced near-surface productivity, probably associated with the interaction between the Leeuwin Current and Indian Ocean surface water, results in a linear ridge of pelagic sediment at ≈ 140 m. water depth. This ramp depositional system in an arid climate has important applications for the geological record: inner-ramp sediments can contain important heterozoan elements, mid-ramp sediments with bedforms created by internal tides can form in water depths exceeding 50 m, saline outflow can arrest or dramatically slow mid-ramp sedimentation mimicking maximum flooding intervals, and outer-ramp planktic productivity can generate locally important fine-grained carbonate sediment bodies. Changing oceanography during sea-level rise can profoundly affect sediment composition, sedimentation rate and packaging. © 2004 International Association of Sedimentologists

    Evolution of quantum strategies on a small-world network

    No full text
    Extent: 9p.In this paper, quantum strategies are introduced within evolutionary games in order to investigate the evolution of quantum strategies on a small-world network. Initially, certain quantum strategies are taken from the full quantum space at random and assigned to the agents who occupy the nodes of the network. Then, they play n-person quantum games with their neighbors according to the physical model of a quantum game. After the games are repeated a large number of times, a quantum strategy becomes the dominant strategy in the population, which is played by the majority of agents. However, if the number of strategies is increased, while the total number of agents remains constant, the dominant strategy almost disappears in the population because of an adverse environment, such as low fractions of agents with different strategies. On the contrary, if the total number of agents rises with the increase of the number of strategies, the dominant strategy re-emerges in the population. In addition, from results of the evolution, it can be found that the fractions of agents with the dominant strategy in the population decrease with the increase of the number of agents n in a n-person game independent of which game is employed. If both classical and quantum strategies evolve on the network, a quantum strategy can outperform the classical ones and prevail in the population.Q. Li, A. Iqbal, M. Chen, and D. Abbot

    Holocene growth history of a reef complex on a cool-water carbonate margin: Easter Group of the Houtman Abrolhos, Eastern Indian Ocean

    Get PDF
    The Houtman Abrolhos reefs, situated on the western continental margin of Australia, occupy a transitional position between cool-water shelf carbonate sediments to the south and more tropical environments to the north. Their existence at the outer limits of the geographical range for coral reef growth is a result of the warm, poleward-flowing Leeuwin Current. Though the modern reefs differ ecologically from tropical reefs, their geological characteristics have been little known until recently. Each of the three island groups in the Abrolhos consists of a central platform of Last Interglacial reefs, about which windward and leeward Holocene reefs have developed asymmetrically. In the Easter Group the subtidal windward reef in the west is ca. 10 m thick and is backed by a leeward-prograding, lagoon sand sheet which is 0–3 m thick. The emergent parts of the leeward reefs in the east consist of an upward-shallowing sequence comprising reef facies, peritidal rudstone facies, and coral rubble storm ridges. This is underlain by over 26 m of Holocene reef facies. Coring and dating of the Holocene reefs (using both TIMS and 14C methods) in the Easter Group has shown significantly different lithofacies in the windward and leeward reefs, and has allowed reconstruction of Holocene reef growth and sea-level history. Coralline algal bindstones and interbedded coral framestone facies characterise the relatively slow-growing windward Holocene reefs, whereas the fast-growing leeward reefs consist of coral framestone facies which are dominated by Acropora. The leeward reefs commenced growth about 10,000 years ago and the Morley reef grew to 0.3 m above present sea level by 6400 years B.P., recording a relative high sea-level event. This generated Holocene constructional topography characterised by “blue-hole” terrain. Windward Holocene reef growth commenced after 8200 years B.P. following erosion of the windward part of the Last Interglacial platform. High wave energy and competition with macroalgae limited coral growth, and the coralline algal-dominated windward reefs grew more slowly to sea level. The Holocene sea-level record provided by dates from the 26 m core of the Morley reef (a “keep-up” reef) is the first such record from the western continental margin of Australia
    corecore