2,725 research outputs found

    Explorations in knowing: thinking psychosocially about legitimacy

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.In this paper, we look at what engaging with psychoanalysis, through psychosocial accounts of subjectivity, has contributed to our struggles for legitimacy and security within our ways of knowing. The psychosocial, with its insistence on the unconscious and the irrational, features as both a source of security and of insecurity. We use three examples drawn from our own empirical research to explore the entanglement of the researcher with the researched and how this can offer a re-imagined sense of legitimacy for our work. In elaborating our argument, we discuss our experiences of 'being captured' by data and participants, and of negotiating the ethics of analysing participants' accounts. © 2014 The Author(s). Published by Pedagogy, Culture & Society

    A microcontroller system for investigating the catch effect: Functional electrical stimulation of the common peroneal nerve

    No full text
    Correction of drop foot in hemiplegic gait is achieved by electrical stimulation of the common peroneal nerve with a series of pulses at a fixed frequency. However, during normal gait, the electromyographic signals from the tibialis anterior muscle indicate that muscle force is not constant but varies during the swing phase. The application of double pulses for the correction of drop foot may enhance the gait by generating greater torque at the ankle and thereby increase the efficiency of the stimulation with reduced fatigue. A flexible controller has been designed around the Odstock Drop Foot Stimulator to deliver different profiles of pulses implementing doublets and optimum series. A peripheral interface controller (PIC) microcontroller with some external circuits has been designed and tested to accommodate six profiles. Preliminary results of the measurements from a normal subject seated in a multi-moment chair (an isometric torque measurement device) indicate that profiles containing doublets and optimum spaced pulses look favourable for clinical use

    Interleukin-10 plays an early role in generating virus-specific T cell anergy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infection of mice with the Armstrong strain of lymphocytic choriomeningitis virus (LCMV<sub>ARM</sub>) leads to a robust immune response and efficient viral clearance. This is in contrast to infection with the variant strain LCMV<sub>Clone13</sub>, which causes functional inactivation of effector T cells and viral persistence. The mechanism by which LCMV<sub>Clone13 </sub>suppresses the antiviral immune response and persists in its host is unknown.</p> <p>Results</p> <p>Here we demonstrate that infection with LCMV<sub>Clone13</sub>, but not with LCMV<sub>ARM</sub>, resulted in a steady increase in the serum levels of the immuno-inhibitory cytokine, IL-10. Blockade of IL-10 using neutralizing monoclonal antibody injections in LCMV<sub>Clone13</sub>-infected mice led to dramatically enhanced effector T cell responses at 8 days post-infection. Even though IL-10 blockade resulted in decreased viral titers, the generation and maintenance of memory T cells was still compromised. The functional inactivation of CD8<sup>+ </sup>T cells in IL-10-blocked, chronically infected mice 30 days post-infection was incomplete as potent CTL (cytotoxic T lymphocytes) could be generated by <it>in vitro </it>re-stimulation. IL-10 knockout mice showed a similar pattern of antiviral CD8 T cell responses: early antiviral T cells were dramatically increased and viral levels were decreased; however, CD8 T cells in IL-10 knockout mice were also eventually anergized and these mice became persistently infected.</p> <p>Conclusion</p> <p>Our data suggest that IL-10 plays an early role in LCMV<sub>Clone13</sub>-induced tolerance, although other factors collaborate with IL-10 to induce virus-specific tolerance.</p

    Do patients want choice? An observational study of neurology consultations

    Get PDF
    Objectives: To determine how often patients are given choice in neurology outpatient consultations and whether choice is associated with greater patient satisfaction. Methods: Prospective study in outpatient clinics in two United Kingdom centres. Interactions between 14 neurologists and 223 patients were studied. Participating doctors and patients completed post-appointment questionnaires asking whether choice had been offered/perceived. Patients completed the Medical Interview Satisfaction Scale 21 (MISS-21). Results: Choice was reported after most encounters (patients 71.8%, neurologists 67.9%). Patients and Neurologists failed to agree about whether choice was offered after 32% of consultations. Choice was not associated with increased patient satisfaction. In fact, satisfaction was greater when no choice had been offered (p = 0.05). Satisfaction scores were also greater when doctors were more certain about the diagnosis and when symptoms were considered explained by a medical condition (p ≤ 0.001). Conclusions: Choice featured in the majority of clinical interactions but clinicians and patients often disagreed whether this was the case. Choice was not associated with greater patient satisfaction. Practice implications: Clinicians need to be very explicit if they want patients to know that they are being given choices. Choice is not necessarily valued by patients in all clinical interactions

    Petrology of the Early Cretaceous Sierra Nevada Batholith; the Stokes Mountain region, CA

    Get PDF
    Previous studies have shown that the early Cretaceous batholith (130-110 Ma) contains the least chemically and isotopically evolved lithologies of the composite Sierra Nevada batholith. Mapping at 1:24,000 of a 360 km^2 area in the foothills ESE of Fresno (the Stokes Mountain region; latitude 36°30') reveals a smoothly continuous range (SiO_2 = 44-78%) of calcic lithologies dominated by norites, hornblende gabbros, quartz diorites, tonalites and granodiorites

    Sensory motor systems of artificial and natural hands

    Get PDF
    The surgeon Ambroise Paré designed an anthropomorphic hand for wounded soldiers in the 16th century. Since that time, there have been advances in technology through the use of computer-aided design, modern materials, electronic controllers and sensors to realise artificial hands which have good functionality and reliability. Data from touch, object slip, finger position and temperature sensors, mounted in the fingers and on the palm, can be used in feedback loops to automatically hold objects. A study of the natural neuromuscular systems reveals a complexity which can only in part be realised today with technology. Highlights of the parallels and differences between natural and artificial hands are discussed with reference to the Southampton Hand. The anatomical structure of parts of the natural systems can be made artificially such as the antagonist muscles using tendons. Theses solutions look promising as they are based on the natural form but in practice lack the desired physical specification. However, concepts of the lower spinal loops can be mimicked in principle. Some future devices will require greater skills from the surgeon to create the interface between the natural system and an artificial device. Such developments may offer a more natural control with ease of use for the limb deficient person

    Interferometric Astrometry of Proxima Centauri and Barnard's Star Using Hubble Space Telescope Fine Guidance Sensor 3: Detection Limits for sub-Stellar Companions

    Get PDF
    We report on a sub-stellar companion search utilizing interferometric fringe-tracking astrometry acquired with Fine Guidance Sensor 3 (FGS 3) on the Hubble Space Telescope. Our targets were Proxima Centauri and Barnard's Star. We obtain absolute parallax values for Proxima Cen pi_{abs} = 0.7687 arcsecond and for Barnard's Star pi_{abs} = 0.5454 arcsecond. Once low-amplitude instrumental systematic errors are identified and removed, our companion detection sensitivity is less than or equal to one Jupiter mass for periods longer than 60 days for Proxima Cen. Between the astrometry and the radial velocity results we exclude all companions with M > 0.8M_{Jup} for the range of periods 1 < P < 1000 days. For Barnard's Star our companion detection sensitivity is less than or equal to one Jupiter mass for periods long er than 150 days. Our null results for Barnard's Star are consistent with those of Gatewood (1995).Comment: 35 pages, 13 figures, to appear in August 1999 A

    Space-to-Ground Interactions While Conducting Scientific Fieldwork Under Mars Mission Constraints

    Get PDF
    The Biologic Analog Science Associated with Lava Terrains (BASALT) project is a 4-year program dedicated to iteratively designing, implementing, and evaluating concepts of operations (ConOps) and supporting capabilities to enable and enhance scientific exploration for future human Mars missions. BASALT incorporates three field deployments during which real (non-simulated) biological and geochemical field science is conducted at two high-fidelity Mars analog locations under simulated Mars mission conditions, including communication de-lays and data transmission limitations. BASALTs primary science objective is to investigate how the redox conditions of altered basaltic environments affect the development of microbial communities in these Mars-relevant settings. Field sites include the active East Rift Zone on the Big Island of Hawaii, reminiscent of early Mars when basaltic volcanism and interaction with water were widespread, and the dormant eastern Snake River Plain in Idaho, similar to present-day Mars where basaltic volcanism is rare and most evidence for volcano-driven hydrothermal activity is relict. BASALTs primary science operations objective is to investigate exploration ConOps and capabilities that facilitate scientific return during human-robotic exploration under Mars mission constraints. Each field deployment consists of ten extravehicular activities (EVAs) on the volcanic flows in which two extravehicular and two intravehicular (IV) crew-members conduct the science while communicating across time delay and under bandwidth constraints with an Earth-based Mission Support Center (MSC) comprised of expert scientists and operators. Communication latencies of 5 and 15-minute one-way light time and low (0.512 Mb/s uplink, 1.54 Mb/s down-link) and high (5.0 Mb/s uplink, 10.0 Mb/s downlink) bandwidth conditions are being evaluated. EVA crewmembers communicate with the MSC via voice and text messaging and provide scientific instrument data, still imagery, video streams, and GPS tracking information. The MSC reviews this data across delay and provides recommendations for presampling and sampling tasks. The scientists used dynamic leaderboards (priority rank-ing lists), to track and rank candidate samples relative to one another and against the science objectives for the current EVA and the overall mission. Updates to the dynamic leaderboards are relayed regularly to the IV crewmembers to provide scientific feedback from Earth and to help minimize crew idle time (time spent waiting for Earth input during which no productive tasks are performed). EVA timelines are strategically designed to enable continuous (delayed) feedback from an Earth-based science team while simultaneously minimizing crew idle time. Such timelines are operationally advantageous, reducing transport costs by eliminating the need for crews to return to the same locations on multiple EVAs while still providing opportunities for recommendations from science experts on Earth, and scientifically advantageous by minimizing the potential for cross-contamination across sites. This paper will highlight the space-to-ground interaction results from the three BASALT field deployments, including planned versus actual EVA time-line data, ground assimilation times (the amount of time available to the MSC to provide input to the crew), and idle time. Furthermore, we describe how these results vary under the different communication latency and bandwidth conditions. Together, these data will provide a basis for guiding and prioritizing capability development for future human exploration missions

    Intra-EVA Space-to-Ground Interactions when Conducting Scientific Fieldwork Under Simulated Mars Mission Constraints

    Get PDF
    The Biologic Analog Science Associated with Lava Terrains (BASALT) project is a four-year program dedicated to iteratively designing, implementing, and evaluating concepts of operations (ConOps) and supporting capabilities to enable and enhance scientific exploration for future human Mars missions. The BASALT project has incorporated three field deployments during which real (non-simulated) biological and geochemical field science have been conducted at two high-fidelity Mars analog locations under simulated Mars mission conditions, including communication delays and data transmission limitations. BASALT's primary Science objective has been to extract basaltic samples for the purpose of investigating how microbial communities and habitability correlate with the physical and geochemical characteristics of chemically altered basalt environments. Field sites include the active East Rift Zone on the Big Island of Hawai'i, reminiscent of early Mars when basaltic volcanism and interaction with water were widespread, and the dormant eastern Snake River Plain in Idaho, similar to present-day Mars where basaltic volcanism is rare and most evidence for volcano-driven hydrothermal activity is relict. BASALT's primary Science Operations objective has been to investigate exploration ConOps and capabilities that facilitate scientific return during human-robotic exploration under Mars mission constraints. Each field deployment has consisted of ten extravehicular activities (EVAs) on the volcanic flows in which crews of two extravehicular and two intravehicular crewmembers conducted the field science while communicating across time delay and under bandwidth constraints with an Earth-based Mission Support Center (MSC) comprised of expert scientists and operators. Communication latencies of 5 and 15 min one-way light time and low (0.512 Mb/s uplink, 1.54 Mb/s downlink) and high (5.0 Mb/s uplink, 10.0 Mb/s downlink) bandwidth conditions were evaluated. EVA crewmembers communicated with the MSC via voice and text messaging. They also provided scientific instrument data, still imagery, video streams from chest-mounted cameras, GPS location tracking information. The MSC monitored and reviewed incoming data from the field across delay and provided recommendations for pre-sampling and sampling tasks based on their collective expertise. The scientists used dynamic priority ranking lists, referred to as dynamic leaderboards, to track and rank candidate samples relative to one another and against the science objectives for the current EVA and the overall mission. Updates to the dynamic leaderboards throughout the EVA were relayed regularly to the IV crewmembers. The use of these leaderboards enabled the crew to track the dynamic nature of the MSC recommendations and helped minimize crew idle time (defined as time spent waiting for input from Earth during which no other productive tasks are being performed). EVA timelines were strategically designed to enable continuous (delayed) feedback from an Earth-based Science Team while simultaneously minimizing crew idle time. Such timelines are operationally advantageous, reducing transport costs by eliminating the need for crews to return to the same locations on multiple EVAs while still providing opportunities for recommendations from science experts on Earth, and scientifically advantageous by minimizing the potential for cross-contamination across sites. This paper will highlight the space-to-ground interaction results from the three BASALT field deployments, including planned versus actual EVA timeline data, ground assimilation times (defined as the amount of time available to the MSC to provide input to the crew), and idle time. Furthermore, we describe how these results vary under the different communication latency and bandwidth conditions. Together, these data will provide a basis for guiding and prioritizing capability development for future human exploration missions
    corecore