3,852 research outputs found

    Wind-Driven Gas Networks and Star Formation in Galaxies: Reaction-Advection Hydrodynamic Simulations

    Full text link
    The effects of wind-driven star formation feedback on the spatio-temporal organization of stars and gas in galaxies is studied using two-dimensional intermediate-representational quasi-hydrodynamical simulations. The model retains only a reduced subset of the physics, including mass and momentum conservation, fully nonlinear fluid advection, inelastic macroscopic interactions, threshold star formation, and momentum forcing by winds from young star clusters on the surrounding gas. Expanding shells of swept-up gas evolve through the action of fluid advection to form a ``turbulent'' network of interacting shell fragments whose overall appearance is a web of filaments (in two dimensions). A new star cluster is formed whenever the column density through a filament exceeds a critical threshold based on the gravitational instability criterion for an expanding shell, which then generates a new expanding shell after some time delay. A filament- finding algorithm is developed to locate the potential sites of new star formation. The major result is the dominance of multiple interactions between advectively-distorted shells in controlling the gas and star morphology, gas velocity distribution and mass spectrum of high mass density peaks, and the global star formation history. The gas morphology observations of gas in the LMC and in local molecular clouds. The frequency distribution of present-to-past average global star formation rate, the distribution of gas velocities in filaments (found to be exponential), and the cloud mass spectra (estimated using a structure tree method), are discussed in detail.Comment: 40 pp, 15 eps figs, mnras style, accepted for publication in MNRAS, abstract abridged, revisions in response to referee's comment

    The use of a formal sensitivity analysis on epidemic models with immune protection from maternally acquired antibodies

    Get PDF
    This paper considers the outcome of a formal sensitivity analysis on a series of epidemic model structures developed to study the population level effects of maternal antibodies. The analysis is used to compare the potential influence of maternally acquired immunity on various age and time domain observations of infection and serology, with and without seasonality. The results of the analysis indicate that time series observations are largely insensitive to variations in the average duration of this protection, and that age related empirical data are likely to be most appropriate for estimating these characteristics

    A microcontroller system for investigating the catch effect: Functional electrical stimulation of the common peroneal nerve

    No full text
    Correction of drop foot in hemiplegic gait is achieved by electrical stimulation of the common peroneal nerve with a series of pulses at a fixed frequency. However, during normal gait, the electromyographic signals from the tibialis anterior muscle indicate that muscle force is not constant but varies during the swing phase. The application of double pulses for the correction of drop foot may enhance the gait by generating greater torque at the ankle and thereby increase the efficiency of the stimulation with reduced fatigue. A flexible controller has been designed around the Odstock Drop Foot Stimulator to deliver different profiles of pulses implementing doublets and optimum series. A peripheral interface controller (PIC) microcontroller with some external circuits has been designed and tested to accommodate six profiles. Preliminary results of the measurements from a normal subject seated in a multi-moment chair (an isometric torque measurement device) indicate that profiles containing doublets and optimum spaced pulses look favourable for clinical use

    Towards More Data-Aware Application Integration (extended version)

    Full text link
    Although most business application data is stored in relational databases, programming languages and wire formats in integration middleware systems are not table-centric. Due to costly format conversions, data-shipments and faster computation, the trend is to "push-down" the integration operations closer to the storage representation. We address the alternative case of defining declarative, table-centric integration semantics within standard integration systems. For that, we replace the current operator implementations for the well-known Enterprise Integration Patterns by equivalent "in-memory" table processing, and show a practical realization in a conventional integration system for a non-reliable, "data-intensive" messaging example. The results of the runtime analysis show that table-centric processing is promising already in standard, "single-record" message routing and transformations, and can potentially excel the message throughput for "multi-record" table messages.Comment: 18 Pages, extended version of the contribution to British International Conference on Databases (BICOD), 2015, Edinburgh, Scotlan

    Report from magnetospheric science

    Get PDF
    By the early 1990s, magnetospheric physics will have progressed primarily through observations made from Explorer-class spacecraft, sounding rockets, ground based facilities, and shuttle based experiments. The global geospace science (GGS) element of the International Solar Terrestrial Physics program, when combined with contributions to the ESA Cluster mission and ground based and computer modeling programs, will form the basis for a major U.S. initiative in magnetospheric physics. The scientific objectives of the GGS program involve the study of energy transport throughout geospace. The Cluster mission will investigate turbulence and boundary phenomena in geospace, particularly at high latitudes on the dayside and in the region of the neutral sheet at geocentric distances of about 20 earth radii on the night side of the earth. The current state of knowledge is reviewed and the goals of these missions are briefly discussed

    A coupled drug kinetics-cell cycle model to analyse the response of human cells to intervention by topotecan

    Get PDF
    A model describing the response of the growth of single human cells in the absence and presence of the anti-cancer agent topotecan (TPT) is presented. The model includes a novel coupling of both the kinetics of TPT and cell cycle responses to the agent. By linking the models in this way, rather than using separate (disjoint) approaches, it is possible to illustrate how the drug perturbs the cell cycle. The model is compared to experimental in vitro cell cycle response data (comprising single cell descriptors for molecular and behavioural events), showing good qualitative agreement for a range of TPT dose levels

    Analysis of two-player quantum games in an EPR setting using geometric algebra

    Get PDF
    The framework for playing quantum games in an Einstein-Podolsky-Rosen (EPR) type setting is investigated using the mathematical formalism of Clifford geometric algebra (GA). In this setting, the players' strategy sets remain identical to the ones in the classical mixed-strategy version of the game, which is then obtained as proper subset of the corresponding quantum game. As examples, using GA we analyze the games of Prisoners' Dilemma and Stag Hunt when played in the EPR type setting.Comment: 20 pages, no figure, revise
    corecore