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The use of a formal sensitivity analysis on epidemic

models with immune protection from maternally

acquired antibodies

J. D. Chapmana,1, M. J. Chappella, N. D. Evansa

aSchool of Engineering, University of Warwick, Coventry, CV4 7AL

Abstract

This paper considers the outcome of a formal sensitivity analysis on a se-

ries of epidemic model structures developed to study the population level

effects of maternal antibodies. The analysis is used to compare the potential

influence of maternally acquired immunity on various age and time domain

observations of infection and serology, with and without seasonality. The

results of the analysis indicate that time series observations are largely in-

sensitive to variations in the average duration of this protection, and that

age related empirical data are likely to be most appropriate for estimating

these characteristics.

Keywords: SIR Epidemic Models; Maternal Antibodies; Sensitivity

Analysis; PDE Systems; Age Dependency; Serological Survey.

1. Introduction

During early life the immature neonate immune system is highly depen-

dent on the accumulated immunologic experience of the mother. For exam-
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ple, in the case of human respiratory syncytial virus (hRSV), which has a

particularly low average age at primary infection, studies such as those by

Ogilvie et al. [1] and Hacimustafaoglu et al. [2] have shown a strong corre-

lation between high levels of maternal antibodies (MAb) and reduced risk of

infection and severity of disease among young infants. Maternal immunity

is only acquired passively in the specific form of immunoglobulin isotopes

IgA and IgG [3], where IgA is transferred after birth through breast feeding

and remains predominantly within mucosal secretions in the digestive and

respiratory tracts of the infant. The majority of IgG transfer occurs dur-

ing the final four weeks of pregnancy, where antibodies actively enter foetal

circulation via the placenta. As a result MAb are short lived and following

birth, concentrations of IgG in the newborn decay exponentially with a typi-

cal half life of around 35-40 days [4]. Many seroepidemiological surveys have

shown that most infants become seronegative within 6-9 months of age (see

the work by Cox et al. [5] and Hacimustafaoglu et al. [2] for hRSV, Williams

et al. [6] for measles and Nicoara et al. [4] for measles, mumps and rubella

(MMR)).

The focus of this paper is not on the individual, however, but on the

analysis of epidemic models developed to investigate the potential influence

of MAb on wider, population level infection dynamics. In this case it is not

individual MAb decay (typically estimated using mixed effects modelling

techniques and longitudinal serological data) that is directly considered, but

the resulting population immunity. The most common approach to deter-

ministic modelling of this type is through a compartmental representation of

the various stages of the natural history of infection, written as a system of
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ordinary differential equations (ODE). This method was first developed by

Kermack and McKendrick [7], in the form of a fundamental SIR (Susceptible-

Infective-Recovered) type model structure, which was intended to approxi-

mate epidemic evolution within large constant size populations (for general

examples see the texts by Jacquez [8] and Capasso [9], and for specific exam-

ples see the work by Weber et al. [10] and White et al. [11] for hRSV, and

Keeling and Grenfell [12] for measles).

Postulated models of this type are often fitted to time series data corre-

sponding to the prevalence (current number of infective cases) or incidence

(current rate of emerging cases) of infection, typically recorded from obser-

vations of clinical disease. This process is performed in order to estimate

parameter values within the model and make inferences about various char-

acteristics of the real system. However, epidemic data are also often collected

with respect to age, for example, in the form of age serological surveys where

samples of serum are tested for the presence of disease specific antibodies.

It is the objective of this work to use a formal sensitivity analysis, applied

to a general partial differential equation (PDE) model structure, in order to

compare a number of prospective age and time domain output structures,

corresponding to observations of infection and serology. The intention is to

establish how well parameters associated with maternally acquired immunity

might be determined by various observations of the real system and also to

consider the potential influence of these processes on various aspects of sys-

tem behaviour. The analysis is performed according to the work by Vajda et

al. [13] on models residing at endemic equilibrium, where analytic results are

derived for systems without seasonal forcing and numerical results obtained
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for those that include annual variation with time.

2. SIR Framework Models

The general SIR model [7] is used to characterise epidemic systems where

the natural history of infection can be approximated into three distinct

stages. The total population is therefore divided into non-overlapping classes

that represent subpopulations of individuals with a specific state of disease:

Susceptible (S), Infective (I) or Recovered (R). The susceptible class includes

all individuals who are able to contract the disease and become infectious;

the infective class represents only individuals who are currently infected and

infectious to susceptibles, and the recovered class contains all individuals

who have recovered from infection and consequently acquired some form of

immunity.

The fundamental SIR model can be readily extended to incorporate any

number of different epidemiological characteristics such as incomplete im-

munity (see Gomes et al. [14]), altered secondary infection (see Glass and

Grenfell [15], and White et al. [11]) and multiple-strain variants (see White

et al. [16]) etc. The potential effects of maternally derived protection can

be explored with an additional state compartment M(t), see Figure 1, that

corresponds to newborn individuals protected by MAb [17]. Individuals are

born into either the maternally protected or susceptible class depending on

the previous infection experience of the mother. The total inflow of new-

borns into the population occurs at a net birth rate equal to µN , where µ

(yr−1) is a combined fertility/mortality coefficient and N is the total popu-

lation size. The parameter ω (yr−1) describes the rate at which maternally
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Figure 1: MSIR Compartmental Model

protected newborns become fully susceptible, and ν (yr−1) denotes the rate

at which infective individuals recover from infection. It is assumed that the

average duration of infection, ν−1, is small with respect to the average life

expectancy, µ−1, so that the net mortality rate µ(M(t) + S(t) + I(t) +R(t))

can be assumed to equal µN , hence maintaining a constant size population.

Assuming there is an average contact rate c (yr−1) between all individuals

within a particular population, then the rate at which infective individuals

I(t) make contact with individuals from the susceptible proportion, S(t)/N ,

can be shown to be cS(t)I(t)/N . For each contact between infective and

susceptible individuals there is a finite probability ρ that the infectious agent

will be successfully transmitted. Therefore the incidence of disease (i.e. the

rate at which susceptible individuals become infected) can be modelled as

βS(t)I(t)/N , where β = cρ, and λ(t) = βI(t)/N is often used to represent

the force of infection [8]. A system of ordinary differential equations (ODEs)
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can then be defined:

dM(t)

dt
= µR(t)− ωM(t), M(0) = M0, (1)

dS(t)

dt
= µI(t) + ωM(t)− β(t)

N
S(t)I(t), S(0) = S0, (2)

dI(t)

dt
=

β(t)

N
S(t)I(t)− (µ+ ν)I(t), I(0) = I0, (3)

dR(t)

dt
= νI(t)− µR(t), R(0) = R0. (4)

If necessary the system (1)-(4) can be reduced to a set of three state equations

given that R(t) = N−M(t)−S(t)−I(t).

Given that both the effects of human behaviour, c, and the contagious-

ness of the infectious agent, ρ, are potentially governed by recurring seasonal

trends, it is common to include a periodic function of time within the trans-

mission parameter β(t). For example, seasonality in measles is primarily

driven by the annual school term-time pattern of increased contact between

individuals in the classroom [18], and prolonged survival of many pathogens

outside the host is significantly affected by varying climatic conditions, such

as temperature and humidity [19]).

3. PDE Framework Models

In order to compare both time and age domain output structures, the

MSIR model framework is required to include variation in the states of

disease with respect to age. Age dependency can be included within SIR

type epidemic model structures either discretely, as additional state compart-

ments that represent key age/risk groups (see the HIV transmission model

by Jacquez [8]), or as in this work, continuously as a system of partial dif-

ferential equations (PDEs) (see the book by Anderson and May [17]). The
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ODE based MSIR model structure, described by equations (1)-(4), is there-

fore extended so that the system state variables vary with respect to a second

independent variable corresponding to age a. In this instance, the functions

M(t, a), S(t, a) and I(t, a) represent time varying age distributions of indi-

viduals who are maternally protected, susceptible and infective respectively.

Since it is the intention of this work to directly compare equivalent age and

time domain models of the same MSIR structured system, additional com-

plexities arising from age dependency in other model parameters such as

fertility, mortality and heterogeneous social mixing are neglected. Therefore,

the full PDE system is defined as follows:

∂M(t, a)

∂t
+
∂M(t, a)

∂a
= −

(
ω + µ

)
M(t, a), (5)

∂S(t, a)

∂t
+
∂S(t, a)

∂a
= ωM(t, a)−

(
λ(t)+µ

)
S(t, a), (6)

∂I(t, a)

∂t
+
∂I(t, a)

∂a
= λ(t)S(t, a)− (ν + µ)I(t, a), (7)

where

λ(t) = (β(t)/N)

∫ ∞
0

I(t, a) da, (8)

β(t) = β0(1 + β1 cos(2π(t− φ))), (9)

with boundary conditions given by:

M(t, 0) = µ

∫ ∞
0

(N−S(t, a)−I(t, a)) da, (10)

S(t, 0) = µN −M(t, 0), I(t, 0) = 0. (11)

Seasonality is included in the transmission parameter as a simple sinu-

soidal function of time, as shown in equation (9), where β0 is the average
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level of transmission, β1 represents the magnitude of the annual variation

and φ corresponds to the phase.

Integrating the PDE model equations with respect to age (i.e. finding

the total number of individuals residing in each state of disease for time t)

gives rise to a time domain model structure equivalent to the ODE system

previously discussed in Section 2 (equations (1)-(4)):

dM(t)

dt
= M(t, 0)−

(
ω+µ

)∫ ∞
0

M(t, a) da, (12)

dS(t)

dt
= S(t, 0) + ω

∫ ∞
0

M(t, a) da−
(
λ(t)+µ

)∫ ∞
0

S(t, a) da, (13)

dI(t)

dt
= λ(t)

∫ ∞
0

S(t, a) da− ν
∫ ∞
0

I(t, a) da. (14)

Consequently this means that in this simple case the time dynamic behaviour

of the model is identical to that of the original ODE model and hence during

numerical simulation of the PDE system the integral components within

the boundary conditions and the force of infection λ(t), can be calculated

separately (more easily) from the original ODE system.

If instead the PDE model equations are integrated with respect to time,

for example over τ complete annual cycles (to find the annual average number

of individuals residing in each state of disease for a given age a) then the

following system of age domain integro-differential equations can be derived:

dM(a)

da
=
δ(a)

τ

∫ τ

0

M(t, 0) dt−
(
ω+µ

)1

τ

∫ τ

0

M(t, a) dt, (15)

dS(a)

da
=
δ(a)

τ

∫ τ

0

S(t, 0) dt− 1

τ

∫ τ

0

(
λ(t)+µ

)
S(t, a) dt, (16)

dI(a)

da
=

1

τ

∫ τ

0

λ(t)S(t, a) dt− ν

τ

∫ τ

0

I(t, a) dt, (17)
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where the Dirac delta function, δ(a), terms replace the boundary conditions

given by (10)-(11) and ensure that all newborns are born at age zero.

However, given that the incidence age profile is calculated as:

1

τ

∫ τ

0

β(t)S(t, a)I(t) dt, (18)

then for seasonal systems there is inevitably some residual time dependency

in the age profile hence requiring the full PDE system (5)-(11) to be solved.

The epidemiological measures considered in this study are:

• Prevalence - the number of individuals within a population currently

presenting the infection, defined by y = I(t, a).

• Incidence - the current rate of emerging cases, e.g. recorded as the

number of new cases within a 4 week period, y = λ(t, a)S(t, a).

• Serology - a qualitative serological survey of disease specific antibod-

ies, implemented as y = M(t, a) +R(t, a).

It should be noted that all of these measures can, in principle, be recorded

with respect to both time and age. For simplification it is assumed that

observable disease is directly correlated with infection, and the presence or

absence of antibodies with complete immunity or susceptibility.

4. Structural Identifiability

An important prerequisite to sensitivity analysis is the a priori determi-

nation of structural identifiability; that is the theoretical problem of whether

or not the unknown parameters, p = (p1, p2, ..., pm)T , of a postulated model
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structure can be uniquely determined from a particular set of input/output

relations [20, 21]. Global identifiability indicates that a given parameter

(or model structure, should all parameters be globally identifiable) can be

uniquely determined from the considered observation. However, should a

model structure prove not to be globally identifiable, a number of alternative

parameterisations, denoted p̃ = (p̃1, p̃2, ..., p̃m)T , may exist that give rise to

identical input/output behaviour, i.e. parameter vectors p̃ and p are indistin-

guishable. Therefore, unidentifiable parameters are not uniquely determined

by the chosen input/output structure and hence cannot be estimated with

confidence from even perfect, noise-free and continuous data, regardless of

their sensitivity.

Epidemic models of the type described by (1)-(4) tend to be uncontrolled

(free or autonomous) and nonlinear, requiring more complex methods of

analysis over typical linear systems [22]. A brief overview on techniques

for nonlinear identifiability is provided by Boubaker and Fourati [23], but

see also the work by Godfrey and Fitch [24] for the use of a Taylor series

expansion on examples in pharmacokinetics, publications by Ljung and Glad

[25], and Saccomani et al. [26] regarding computational approaches using

differential algebra, and Evans et al. [27] for a method based on the existence

of a general nonlinear state transformation.

The papers by Evans et al. [28] and Chapman et al. [29] show how the

latter of these techniques [27], can be successfully applied to time domain

ODE SIR type epidemic models with seasonal forcing, incomplete immunity

and birth targeted vaccination. The analyses show that the general SIR,

from which the MSIR is extended, is structurally globally identifiable from
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a prevalence observation provided the population size, N , is a known pa-

rameter. Applying the same analysis to the time domain ODE MSIR model

(1)-(4) yields two sets of relations corresponding to indistinguishable param-

eter vectors, p̃ ∼ p, given by

{ω̃ = ω, µ̃ = µ, β̃ = β, Ñ = N, ν̃ = ν, M̃0 = M0, S̃0 = S0, Ĩ0 = I0}

and

{ω̃ = µ, µ̃ = ω, β̃+ω̃ = β+ω,
β̃

Ñ
=

β

N
,

ν̃ = ν, M̃0ω̃ = M0ω, S̃0
β̃

Ñ
+ω̃ = S0

β

N
+ω, Ĩ0 = I0}.

(19)

It can be seen from the second set of relations that the model is found to be

unidentifiable, since an infinite number of parameter value combinations may

be generated that give rise to identical observable behaviour of the system.

However, provided that the parameters ω and µ are clearly distinguishable

in magnitude (i.e. duration of immunity from MAb is significantly less than

average life expectancy) or any one of the unidentifiable parameters is known,

then the second set of relations reduce to that of the first. In this instance,

the model can be considered to be globally structurally identifiable since the

only indistinguishable parameter vector, p̃, that exists is p̃ = p.

Since the general MSIR PDE structure (5)-(11) is homogeneous, model

parameters may be estimated using only the time or age domain realisations.

Therefore, from the results given by (19), it can be said that the full PDE

system is structurally globally identifiable via a prevalence observation of

infection recorded with respect to time. Unfortunately, the inclusion of fur-

ther model complexity arising from epidemiological characteristics such as
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altered secondary infections, heterogeneous age dependency, and alternative

observations of incidence and serology, lead to excessively intensive symbolic

computation using any of the aforementioned analytical methods. Numerical

methods such as that described by Batzel et al. [30] may be performed in-

stead, however, these approaches provide only a local analysis for a particular

set of parameter values.

5. Sensitivity Analysis Methods & Application

The structural identifiability results (19) of the previous section indicate

that all model parameters, including those associated with the duration of

MAb protection, are uniquely determined by a prevalence observation and

have at least an analytical influence on the corresponding output of a fun-

damental time domain MSIR type system. However, a positive structural

identifiability analysis does not provide a quantitative indication of how well

parameters are defined by the output, and hence, does not guarantee robust

estimation of parameter values when fitting to empirical data. In contrast,

sensitivity based methods are concerned with the quantitative responses of

models to the perturbation of inputs and parameters, and are therefore often

used as the basis for model reduction and experimental design [31].

In describing the derivation of parametric sensitivities we consider the

standard nonlinear system:

Σ(p) =


dx(t, p)

dt
= f(x(t, p), p),

y(t, p) = h(x(t, p), p),

x(0, p) = x0(p),

(20)
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where x(t, p) is a vector of state variables and y(t, p) denotes the structure of

the output. It should be noted that both x(t, p) and y(t, p) may be defined

as functions of either time or age.

For a given function of time (or age), y(t, p), which is also a differentiable

function of some parameter vector p = (p1, p2, ..., pm)T , the point or local

sensitivities indicate the rate of change of y(t, p) with respect to p, evaluated

at some nominal point in parameter space, p0 [8]. In this case, the sensitivity

functions correspond to partial derivatives of the form:

Si(t, p) =
∂y(t, p)

∂pi
, (21)

which are considered as gradients about p0 in a m-dimensional parameter

space, given as a function of time.

In simple examples it may be possible to evaluate sensitivity derivatives

analytically from tractable solutions of the system equations, thus allowing

for general results to be obtained. However, in most cases, increasing model

complexity inhibits the direct calculation of these functions and a more nu-

merical approach must be adopted instead. In this instance, parametric

sensitivity is estimated from manual manipulation (perturbation) of the in-

dividual model parameters and observation of the resulting deviation in the

output (see the book by Tomovic [32]). Subsequently, this approach yields

only a local analysis about the point p0, whereby an initial estimate for a

nominal set of parameter values is required prior to evaluation.

The generalisation of local analyses over wider regions of parameter space

has been attempted through a number of statistical techniques using Monte

Carlo simulation [33, 34]. However, numerical based global evaluation of non-

monotonic systems remains a challenging task since adjacent sample points
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in p may only coincidently yield similar behaviour of y(t, p). Computation

also becomes increasingly intensive with larger numbers of parameters.

5.1. Formal Derivation

The sum of squares deviation of an output function, y(t, p), from some

nominal point, y(t, p0), due to a variation ∆p in p, can be expressed in the

form:

Q(p) =
n∑
j=1

[y(tj, p)− y(tj, p0)]
2, (22)

for the selected time points {t1, t2, ..., tn}. The function Q(p) is an analytic

function of p, which has a Taylor series expansion about the point p0 given

by

Q(p) ≈ Q(p0)+(∆p)TG(p0)+
1

2
(∆p)TH(p0)∆p, (23)

where the variation ∆p is sufficiently small such that terms of O(‖∆p‖3) can

be considered negligible. Since p0 is assumed to minimise Q(p), the gradient

vector, G(p0), defined by [G]i = ∂Q/∂pi, and the term Q(p0) are both equal

to zero. Therefore, the expression given by (23) can be further reduced to:

Q(p) ≈ 1

2
(∆p)TH(p0)∆p, (24)

where [H]ij = ∂2Q/∂pi∂pj is the Hessian matrix of Q (matrix of second

derivatives with respect to p). The m by n sensitivity matrix, S, where

2S TS = H(p0), can then be constructed according to the selected time points

{t1, t2, ..., tn} in the following manner:

S =


∂ y(t1, p)

∂ p1
. . .

∂ y(t1, p)

∂ pm
...

. . .
...

∂ y(tn, p)

∂ p1
. . .

∂ y(tn, p)

∂ pm

 . (25)
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hence allowing (24) to be rewritten as:

Q(p) ≈ (∆p)TS TS∆p. (26)

Alternatively, following the work of Vajda et al. [13], a normalised parameter

vector, α, where αi = ln pi for i = 1, 2, . . . ,m, may be defined. The resulting

normalised sum of squares deviation of the output function y(t, α), from a

nominal point, y(t, α0), to a change ∆α in α, can then be expressed by:

Q(α) =
n∑
j=1

[
y(tj, α)− y(tj, α0)

y(tj, α0)

]2
, (27)

hence replacing the response equation in (36). This results in the generation

of a normalised sensitivity matrix with elements of the form:

Sij =
∂ ln y(tj, p)

∂ ln pi
. (28)

In cases where analytic solutions to (20) are not obtainable practically, the

partial derivatives of the sensitivity matrix are calculated numerically using

either finite differencing [35] or direct differential methods [36]. The latter of

these techniques involves solving an augmented system of equations derived

by differentiating h(x(t, p), p) in (20) with respect to p and switching the

order of differentiation:

dS(t, p)

dt
=

∂h(x(t, p), p)

∂x
S(t, p) +

∂h(x(t, p), p)

∂p
. (29)

The state variables, Si(t, p), corresponding to the sensitivity derivatives given

by(21), are then found using a suitable ODE integrator such as ode15s in

MATLAB. The other derivative components in (29) can be calculated using

automatic differentiation methods based on repeated application of the chain

rule. These can be implemented using additional MATLAB modules such as

myAD [37] or MAD [38].
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6. Sensitivity Analysis of Non-Seasonally Forced Models

All analyses described in this work are performed on models residing at

endemic equilibrium. In cases where the transmission function, β, is not

subjected to annual variation, state variables described by the PDE system

(5)-(11) vary in age profile but remain constant with respect to time. In this

instance, algebraic solutions may be found for both the steady state values of

the time domain MSIR model (12)-(14), and the state trajectories described

by the linear age domain model (15)-(17). This allows for general sensitivity

functions to be derived, according to expressions (21) and (28) in Section 5.

6.1. Static Time Domain Analysis

Provided that annual variation, β1 = 0, and the basic reproduction num-

ber, R0 > 1, where R0 = β/(µ + ν), the homogeneous time domain MSIR

model, defined by the differential equations (12)-(14) and shown in Figure 1,

has the following stable endemic fixed point equilibrium:

M∗ =
Nνµ(β − (µ+ ν))

β(µω + ν(µ+ ω))
, S∗ =

N(µ+ ν)

β
, I∗ =

ω

ν
M∗. (30)

For a time domain prevalence type observation, where y(t, p) = I(t, p),

the magnitude and normalised sensitivities of the output equilibrium point,

y∗(p) = I∗, to the MAb parameter ω, are found respectively to be given by:

∂ y∗(p)

∂ ω
=
Nνµ2(β − (µ+ν))

β(µω + ν(µ+ω))2
,

∂ ln y∗(p)

∂ lnω
=

µν

µν + ω(µ+ν)
. (31)

Alternatively, for an incidence observation, where y∗(p) = βS∗I∗/N , given

that S∗ is not a function of ω, the normalised sensitivity function is identical

to that of a prevalence output and the absolute (non-normalised) sensitivity

function is simply scaled by a factor of βS∗/N = µ+ ν.
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Finally, if the output structure corresponds to a serological type observa-

tion, where y∗(p) = N − S∗ − I∗, since again S∗ is not a function of ω, the

non-normalised sensitivity function is the same as for y∗(p) = −I∗ (preva-

lence). The normalised sensitivity function is then found to be of the form:

∂ ln y∗(p)

∂ lnω
=

µ2ω

(µ+ ω)(µν + ω(µ+ ν))
. (32)

Given that for almost all SIR type infections ν >> µ (i.e. duration of infec-

tion is considerably less than average life expectancy), the following param-

eter combination (a scaling between normalised prevalence and serological

sensitivity functions) adheres to the inequality:

µω

ν(µ+ ω)
< 1. (33)

Hence, the normalised sensitivity values for prevalence and incidence outputs

will be greater than that of a serological type output, and by a factor of

approximately ν/µ.

Subsequently, the normalised sensitivity functions for all three observa-

tions are only dependent on the parameters µ, ν and ω, and are hence in-

dependent of the transmission parameter β and the population size N . Fur-

thermore, if ν >> µ, it is shown, by dividing the second expression in (31)

through by ν, that the normalised sensitivity functions for incidence and

prevalence type outputs have only a negligible dependence on the rate of

recovery.

Evaluating the function at typical values of ν = 73yr−1 (average duration

of 5 days) and µ = 0.010, 0.014 and 0.028yr−1 (life expectancy of 100, 71 and

36 years respectively) from a set of nominal parameter values for pre-vaccine
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measles in the UK:

µ = 0.014 yr−1, N = 5.7×107, ν = 73 yr−1, R0 = 18, ω = 4 yr−1, (34)

the normalised sensitivity functions for an incidence or prevalence type ob-

servation can be plotted against varying ωM (see Figure 2).

Figure 2: Static normalised sensitivity functions corresponding to an incidence or preva-

lence type observation of a fundamental MSIR system at endemic equilibrium; computed

for varying ω and discrete values of µ.

From the graph it can be seen that higher birth/mortality rates (i.e.

lower life expectancy) and higher duration of maternal immunity (i.e. lower

ω) result in a heightened sensitivity to ω. This suggests that any influence

of ω on population infection levels only occur indirectly as a result of the

subsequent death of maternally protected individuals before they experience

an infection. This influence is therefore dependent on the population density

age profile, which is governed in the heterogeneous case by an age dependent

mortality function. Given that typical infant mortality rates (under 1 year

of age) are less than 1% for most developed regions, it seems likely that
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Table 1: Normalised sensitivity values for all MSIR model parameters evaluated at nominal

values corresponding to pre-vaccine measles in the UK.

Parameter µ N ν β ω

Prevalence 0.9963 1.0000 -1.0586 0.0588 0.0035

Incidence 0.9965 1.0000 -0.0588 0.0588 0.0035

Serological -0.0020 1.0000 -0.0586 0.0588 −6.7×10−7

the system transmission function is necessarily inhomgeneous to support a

significant static influence of MAb on the endemic prevalence of infection.

It should noted that these conditions are often accentuated in developing

populations where there are likely to be higher birth and infant mortality

rates, and subsequently an age distribution skewed toward the infant age

classes.

For completeness, Table 1 contains the normalised sensitivities of all sys-

tem parameters in the MSIR model for each of the considered output struc-

tures, at the nominal values given in (34).

6.2. Static Age Domain Analysis

For a non-seasonally forced system (i.e. β1 = 0), residing at a fixed point

endemic equilibrium (in time) a linear purely age dependent system can be

derived from the system equations (15)-(17), which has the following analytic

solution for an incidence observation:

y(a, p) =
λe−aµ

(
ωM0e

−aω − (µNω − λS0)e
−aλ)

λ− ω
, (35)

where the initial conditions are M0 = µS∗ and S0 = µM∗, and the force of

infection is given by λ = βI∗/N .
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The normalised sensitivity function (squared), with respect to ω, for all

three observation types can then be found and plotted with respect to in-

creasing age (see Figure 3), using the same nominal values given in (34) for

measles in the UK. Figures 4 and 5 then illustrate how the three sensitivity

curves change with varying basic reproduction number (R0 = 8 and R0 = 80,

respectively).

Figure 3: Age profile normalised sensitivity functions for incidence, prevalence and sero-

logical outputs of a fundamental MSIR system at endemic equilibrium. Sensitivities are

evaluated with respect to ω at nominal parameter values for pre-vaccine measles in the

UK (i.e. R0 = 18).

It can be seen from the results that increasing infectivity (subsequently

lowering average age of infection) reduces the peak age of sensitivity for all

observation types, but has contrasting effects on their magnitude. For low

values of R0 the peak sensitivity for the serological observation is notably

larger than that of prevalence and incidence. However, while the latter two

output sensitivities increase with higher R0 the serological sensitivity de-

creases.
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Figure 4: Prevalence, incidence and serological output age profile normalised sensitivity

functions corresponding to changes in lnω, for R0 = 8.

Figures 6 and 7 show the resulting sensitivity curves for various values

of ω corresponding to an average duration of immunity (ω−1) of 12 months

and 1 month respectively. The results show that the peak sensitivity for the

serological observation varies considerably more than the maximum value for

prevalence and incidence outputs.

In all five examples there is no significant difference between the sensitiv-

ity characteristics of incidence and prevalence type outputs. However, it does

appear that the peak sensitivity for serological type observations occur con-

sistently later in age. This result may prove to be significant in cases where

there are age dependent limitations on the observation of clinical disease or

the collection of serological samples.

In addition to peak values in normalised sensitivity, it should also be noted

that there are key points in age for all output types where the sensitivity of

ω is equal to zero. Interestingly the peak age of sensitivity (0.075 and 0.45
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Figure 5: Prevalence, incidence and serological output age profile normalised sensitivity

functions corresponding to changes in lnω, for R0 = 80.

years) for all output types is well below the average age at primary infection,

which can be calculated in the measles case to be 3.97 years. In all cases the

sensitivity is significantly greater than that for the time domain observations

in Section 6.1.

7. Sensitivity Analysis of Seasonally Forced Models

Many common infections such as Measles, Mumps and Rubella (MMR),

Influenza and hRSV tend to display large (seasonal) recurrent epidemics at

endemic equilibrium rather than settling to a constant level of transmission.

In this instance, parameter sensitivities are determined through the dynamic

analysis of epidemic models that include temporal variation. However, since

there are no convenient analytic solutions to the MSIR framework models

when allowed to vary dynamically with time, the analysis must resort to

more numerical based methods, as outlined in Section 5.
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Figure 6: Prevalence, incidence and serological output age profile normalised sensitivity

functions corresponding to changes in lnω, at ω = 1.

7.1. Homogeneous MSIR

In order to perform a dynamic sensitivity analysis on the seasonally forced

MSIR, an augmented system of differential equations are derived according

to (29). In this instance, the dependent variables correspond to the dynamic

sensitivity functions described by (21). The system of sensitivity equations

are then solved numerically, for each of three output structures, using the

ode15s ODE integrator, and the myAD automatic differentiation module [37]

in MATLAB version R2009b. The computation is performed on an RM

desktop machine with a Pentium D 3.4GHz CPU and 1Gb of RAM, using a

maximum step size of 0.001 years.

Prior to analysis, the simulation is run for a suitable length of settling

time (i.e. 250 years) in order to allow the system solutions to converge

satisfactorily close to their endemic limit cycle. The normalised sensitivity
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Figure 7: Prevalence, incidence and serological output age profile normalised sensitivity

functions corresponding to changes in lnω, at ω = 12.

matrix, given by (28), is then generated for all 7 model parameters (i.e. p =

(µ,N, β0, β1, φ, ν, ω)T ), with sample points taken at uniform time intervals of

0.01 years, for ten complete annual cycles. Figures 8 and 9 show the resulting

deviation in the normalised sum of squares function, Q(α), to a unit change

in lnω, i.e. normalised sensitivity squared, for incidence or prevalence and

serological outputs respectively.

The system is seen to exhibit biennial epidemic behaviour in accordance

with documented observations of pre-vaccine measles in the UK [12], where

the normalised sensitivity of ω is found also to be periodic with a time period

of 2 years. Near identical results were obtained for both prevalence and inci-

dence observations, with normalised sensitivity to ω varying between −0.037

and 0.032 throughout the biennial cycle. In contrast, the normalised sensi-

tivity for a serological type observation varies only between −5.26×10−5 and

2.41× 10−4.
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Figure 8: Sum of squares deviation to a unit change in lnω (normalised sensitivity

squared), for an MSIR model with seasonal forcing and a prevalence or incidence out-

put; evaluated with nominal parameter values for measles in the UK.

Figures 10 and 11 show the resulting dynamic sensitivity functions for a

prevalence/incidence observation where ω = 1 and 6 yr−1 respectively (i.e.

average duration of maternally acquired immunity of 12 and 2 months).

In this instance the normalised sensitivity functions are found to be am-

plified with decreasing ω (increasing duration of protection). It can be seen

from the outputs of the two simulations that the peak sum of squares devi-

ation to a unit change in normalised ω is more than 10 times greater for an

average duration of 12 months than for 2 months.

In all cases the point of maximum (magnitude) normalised sensitivity does

not necessarily align with the biennial peak in the corresponding observation.

This is an interesting result as it suggests, for example, that prevalence or
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Figure 9: Sum of squares deviation to a unit change in lnω (normalised sensitivity

squared), for a seasonally forced MSIR model with a serological type output structure;

evaluated with nominal parameter values for measles in the UK.

incidence data collected for validating this particular characteristic of the

MSIR model, would not be optimally sampled around the time of maximum

epidemic behaviour. It can also be seen that there are regions for all output

types where the sensitivity to changes in normalised ω is positive and nega-

tive, and hence two points during each biennial cycle where the this is also

equal to zero.

For completeness, the relative influences of all the MSIR model parame-

ters can be examined through a principal component analysis (PCA) accord-

ing to the work by Vajda et al. [13]. The analysis is performed by means of

an eigenvalue-eigenvector decomposition of the matrix STS = UΛUT , where

S is typically the normalised sensitivity matrix given by (28), such that U

denotes the matrix of normalised eigenvectors, ui, for i = 1, 2, . . . ,m, and

Λ corresponds to a diagonal matrix of eigenvalues, λi. The normalised re-
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Figure 10: Normalised sensitivity (squared) with respect to lnω, for a prevalence or in-

cidence observation of a seasonally forced MSIR model, computed with the nominal UK

measles parameter set and ω = 1 yr−1

sponse function, Q(α) ≈ (∆α)TS TS∆α, can then be redefined in terms of

the principal components Ψ = UTα,

Q(Ψ) =
m∑
i=1

λi ‖∆Ψi‖2 , (36)

given that ∆Ψi = uTi ∆α = (ui,1∆α1 + . . . + ui,m∆αm). Consequently, the

function Q is most sensitive to changes in α along the principal axis corre-

sponding to the largest eigenvalue and is least sensitive to changes in α along

the principal axis corresponding to the smallest eigenvalue.

If λi is not small, hence the corresponding principal component is a signifi-

cant one, a small value for a particular ‖ui,j‖ indicates that the corresponding

parameter αi contributes little to the component. It is suggested by Vajda et

al. [13] that any element of ui with magnitude less than 0.2 can be excluded

from consideration, given that they contribute less than 4% to the sum of
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Figure 11: Normalised sensitivity (squared) with respect to lnω, for a prevalence or in-

cidence observation of a seasonally forced MSIR model, computed with the nominal UK

measles parameter set and ω = 6 yr−1

squares of relative changes in y(t, α) as the parameters vary in the direction

of the principal component. Table 2 shows the magnitude of the resulting

principle components for the MSIR model and the relative contributions of

each individual model parameter.

It can be seen that the magnitude of the principal components range be-

tween 5.4×10−4 and 5.6×105. The parameter ω is clearly the least influential

parameter in the model, making significant contributions (i.e. absolute value

greater than 0.2 [13]) to only the two smallest components. In this instance

an elemental value of 0.002 corresponds to a 0.0004% contribution to the

sum of squares deviation in normalised output, in the direction of the largest

eigenvalue. It can also be noted that despite a tenfold increase in the peak

sum of squares deviation for ω = 1 yr−1, see Figure 11, the resulting PCA

reveals no greater contribution to all but the smallest principal component.
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Table 2: Principal component analysis of the normalised sensitivity matrix corresponding

to a MSIR model with seasonal forcing. Computed at nominal parameter values for pre-

vaccine measles in the UK and sampled at 0.01 year intervals over a 10 year period.

No. Eigenvalue µ N β0 β1 φ ν ω

1 561135 0.236 -0.022 0.270 -0.044 -0.927 -0.095 0.002

2 312054 0.560 -0.115 0.710 0.108 0.323 0.230 0.001

3 7952.76 0.366 0.395 -0.009 -0.306 0.174 -0.766 0.003

4 1074.88 0.300 0.594 -0.269 0.672 -0.065 0.170 -0.002

5 32.7887 -0.187 -0.423 0.146 0.662 0.032 -0.567 0.064

6 0.07314 -0.378 0.309 0.357 0.048 0.001 -0.047 -0.794

7 0.00054 0.479 -0.451 -0.450 0.003 -0.000 -0.002 -0.605

In contrast, all other model parameters appear to be well defined by the cho-

sen outputs, with significant influence over at least one of the three major

components.

7.2. MSEIRS4 Model with Incomplete Immunity

An additional example of a seasonally forced epidemic model with a ma-

ternally protected state variable is the 17 compartment MSEIRS4 structure,

as described by Weber et al. [10]. The model has been developed as a more

realistic compartmental representation of the complex mechanisms associated

with reinfection and accumulating acquired immunity observed with hRSV.

It has been chosen for analysis in this work because it has been previously

fitted to four separate sets of empirical data, corresponding to hRSV infec-
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tion in Finland, Florida, Singapore and The Gambia [10]. This means that

a formal sensitivity analysis can be performed using fitted nominal values, in

order to study the influence of maternally acquired immunity on observations

of primary infection, and hence, the determinability of ω.

This is not intended as a critique of the work published by Weber et

al. [10], given that the flow rate coefficient ω (denoted ξ in [10]) is not a

fitted parameter in their parameter estimation, and the influence of maternal

immunity was not the focus of their study, or the subject of any inference

from the results.

The set of system equations corresponding to the MSEIRS4 model are

provided in Appendix A. The first four infections in the natural history of

the disease are distinguished by separate state variables (i.e. Si(t), Ei(t),

Ii(t) and Ri(t) for i = 1, . . . , 4), where Ei(t), for i = 1, . . . , 4, represents a

latent incubation period prior to infected individuals becoming infectious,

with corresponding elimination parameter σ. In this instance, an individ-

ual’s ‘baseline’ susceptibility ultimately decreases upon recovery from each

infection, following a temporary period of full immunity, with duration de-

termined by γ−1.

The analysis is performed using the nominal set of fitted parameter val-

ues corresponding to hRSV in The Gambia [10]. In a similar manner to the

MSIR example, the sensitivity matrix is generated numerically once the sim-

ulation has satisfactorily converged to a stable endemic limit cycle. Sample

points are again taken at uniform 0.01 year intervals, for 10 complete annual

cycles. Figures 12 and 13 show the resulting deviation in the normalised sum

of squares function, Q(α), due to a unit change in lnω, for primary preva-
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lence or incidence and serological type outputs respectively. The dynamic

sensitivity functions are given with respect to time, and presented against

their corresponding output functions.

Figure 12: Resulting sum of squares deviation, Q(α), in a prevalence/incidence observation

of a seasonally forced MSEIRS4 model, to a unit change in lnω (normalised sensitivity

squared); evaluated at nominal values for hRSV in The Gambia.

It is found that the sensitivity of ω for all output types is periodic with a

time period of 1 year. Near identical results are obtained for prevalence and

incidence outputs (peak absolute value of 0.078), however, the normalised

sensitivity of ω for a serological observation is found to be significantly smaller

in magnitude (peak absolute value of 0.005) and peaked at slightly different

points in time. There are again also two points during each epidemic period

where the sensitivity of y(t, p) with respect to ω is equal to zero. The point

of maximum sensitivity for all outputs does not necessarily align with the

annual peak in the corresponding observation, although their position relative

to the annual epidemic cycle is comparable to that of the measles example
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Figure 13: Sum of squares deviation to a unit change in lnω (normalised sensitivity

squared), for a serological observation of a MSEIRS4 model; evaluated with nominal pa-

rameter values for hRSV in The Gambia.

shown in Figures 8 and 9.

It can also be noted that by removing seasonal forcing from the model (i.e.

setting β1 = 0 and forcing the system to converge to a fixed point endemic

equilibrium) a steady state normalised sensitivity value in the region of 0.0014

is found for a prevalence or incidence observation of primary infection, which

is comparable with the MSIR results shown in Figure 2.

A singular value decomposition of S TS, shows that ω is again poorly

defined by time series infection dynamics. It can be seen from Table 3,

which shows the individual parameter contributions to the resulting principal

components of Q(α), that ω is again the least influential parameter in the

model structure, making significant contributions to only the latter three

principal components.

Similar results were obtained for parameter sets estimated using epidemic
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Table 3: Principal component analysis of the normalised sensitivity matrix corresponding

to a MSEIRS4 model with nominal values for hRSV in The Gambia. Evaluated using a

0.01 year sampling interval over ten complete annual cycles.

No. Eigenvalue µ β0 β1 v ω

1 30952 0.093 0.599 -0.172 -0.651 -0.001

2 7336.2 -0.172 0.741 0.443 0.367 -0.009

3 335.12 -0.712 0.105 -0.493 0.061 0.016

4 98.965 0.451 0.268 -0.583 0.549 0.017

5 4.0005 -0.481 -0.053 -0.093 0.168 -0.117

6 1.9346 0.048 0.074 -0.344 -0.302 -0.320

7 0.29622 0.119 -0.031 -0.086 0.129 -0.668

8 0.027825 0.061 -0.002 -0.236 0.002 0.662

data from Finland, Florida and Singapore [10], suggesting that the regional

variation in parameter values observed in these cases does not have a signif-

icant impact on sensitivity.

For comparison, the original MSEIRS4 model, presented by Weber et al.

[10], is extended to a simple homogeneous PDE structure in an identical

manner to that demonstrated in Section 3, in order to assess equivalent

sensitivities in the age domain.

The system equations are solved using an explicit third order backwards

difference scheme, where any integral (with respect to age) components are

taken directly from a numerical solution of the original time domain model

(obtained using fourth order variable step Runge-Kutta). The PDE solution

is integrated (with respect to time) using a Romberg (Richardson extrapola-

tion) integration method, over 10 complete annual cycles, in order to find an
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average age profile. The normalised sensitivity matrix, S, described in (28),

is then constructed using finite differencing for each of the three output types

considered. The resulting response functions, Q(α), are shown in Figure 14.

Figure 14: Age profile normalised sensitivity functions for incidence, prevalence and sero-

logical outputs of a MSEIRS4 model with respect to lnω; computed using finite differencing

at nominal parameter values for hRSV in The Gambia.

It can be seen for this example that all three sensitivities peak in a similar

region of the age profile, but also that the serological observation is signifi-

cantly greater. Comparing these results to those in Figures 12 and 13 shows

that the margin between squared normalised sensitivities corresponding to

age and time domain observations for the MSEIRS4 model is smaller than

for the measles example, but still in favour of the age domain.

For comparison, the key sensitivity results for each of the three analyses

documented in Sections 6 and 7, and the two example model structures are

summarised in Table 4.
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Table 4: Comparison of the peak magnitude normalised sensitivities of the considered

output structures to changes in lnω, for the MSIR (UK measles) and MSEIRS4 (hRSV in

The Gambia) model structures, from each of the three equilibrium analyses.

Static Time Static Age Dynamic Seasonal

MSIR MSEIRS4 MSIR MSEIRS4 MSIR MSEIRS4

Prevalence 0.0035 0.0014 0.71 0.20 0.036 0.079

Incidence 0.0035 0.0014 0.71 0.22 0.036 0.079

Serological 6.7×10−7 0.00033 1.2 0.51 0.024 0.0016

8. Conclusions

A formal sensitivity analysis has been applied to a set of contrasting epi-

demic models, with various observation structures, for two common viral

diseases. The objective has been to assess the determinability of parameters

associated with passive immunity from MAb, and hence, also estimate the

magnitude of their influence over the static, dynamic and seasonal character-

istics of system behaviour. The results have indicated that the corresponding

sensitivity of community-wide transmission levels is potentially increased by

processes associated with a greater duration of maternally acquired protec-

tion and higher fertility/mortality rates. It has also been shown for homo-

geneous cases that changes in the rate that maternally protected neonates

become fully susceptible has a much greater influence on epidemiological

measures recorded with respect to age than with respect time.

A comparison of results corresponding to equilibrium observations of sys-

tems with constant and seasonally varying transmission suggests that changes

in ω can potentially have a more significant impact on seasonal dynamics

35



than on static levels of infection. This is likely to be a result of epidemic

behaviour being primarily driven by the rate of susceptible supply, which is

directly influenced by changes in maternally acquired immunity. However, in

all dynamic time domain examples, ω was still clearly found to be the least

sensitive parameter in the model. This would seem to be a reasonable result

since the maternally protected population represents only a very small pro-

portion of the total population, although, in developing countries where birth

and mortality rates are much higher, the influence of MAb may be greater.

Consequently, MSIR framework models with time domain output structures

are likely to be inappropriate for estimating characteristics associated with

maternally acquired immunity, especially for populations in more developed

regions. Moreover, in many cases, these models may be acceptably reduced

by omitting the immunising effects of MAb if the purpose of the model is to

achieve reasonable estimates for other parameters such as those associated

with transmission.

All worked examples have consistently shown near identical normalised

sensitivity results, corresponding to changes in ω, for observations of inci-

dence and prevalence in either domain. This suggests that it is not critical

which of the two data types are used with respect to parameter estimation

within these model structures. In addition, no examples were found where

it may be beneficial to utilise a serological type observation recorded with

respect to time. In all dynamic and static age domain analyses it has been

shown that there are key regions, both in the annual epidemic cycle (i.e. with

respect to time) and in the average age profile, that correspond to peak, and

conversely, zero sensitivity to variation in all unknown model parameters.
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This indicates that the use of prior experimental design and optimal sam-

pling could be of great benefit in maximising confidence during parameter

estimation and potentially minimising unnecessary data collection. In the

age domain, analysis of the considered models has shown comparable peak

values in normalised sensitivity for serological and prevalence/incidence out-

puts. However, these peaks tend not to occur at the same points in age,

and have contrasting dependencies on the basic reproduction number and

nominal value of ω. Similarly in the time domain, output sensitivity to ω

appears in all cases not to coincide with the annual or biennial epidemic peak

in infection and differs again between observations of prevalence/incidence

and serology.

It should be noted that a potential limitation of the analysis in this work

has arisen from the consideration of only homogeneous processes for trans-

mission, immunity and fertility etc. The analysis of heterogeneous PDE

based systems is found to be substantially more difficult using techniques as-

sociated with automatic differentiation and the accuracy of most numerical

methods do not permit the implementation of finite differencing given that

time domain sensitivities are found to be in the region of 10−3. However,

it is possible that greater output sensitivity may be generated from small

perturbations in ω if, for example, the peak age of transmission occurs close

to that of the average duration of waning maternal antibody.
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Appendix A. MSEIRS4 Model Equations

Ṁ(t) = µR(t)− (ω + µ)M(t),

Ṡ1(t) = µ(1−R(t)) + ωM(t)− µS1(t)− λ1(t)S1(t),

Ėi(t) = λi(t)Si(t)− (σ + µ)Ei(t), i = 1, . . . , 4,

İi(t) = σEi(t)− (ν + µ)Ii(t), i = 1, . . . , 4,

Ṙi(t) = νIi(t)− (γ + µ)Ri(t), i = 1, . . . , 4,

Ṡj(t) = γRj−1(t)− µSj(t)− λj(t)Sj(t), j = 2, 3,

Ṡ4(t) = γ(R3(t) +R4(t))− µS4(t)− λ4(t)S4(t),

where

R(t) =
∑4

i=1Ri(t), I(t) =
∑4

i=1 Ii(t),

λ1(t) = β0(1+β1 cos(2πt+φ))I(t), λ2(t) = 0.50 λ1(t)

λ3(t) = 0.35 λ1(t), λ4(t) = 0.25 λ1(t),
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