4,282 research outputs found

    Non-collinear long-range magnetic ordering in HgCr2S4

    Full text link
    The low-temperature magnetic structure of \HG has been studied by high-resolution powder neutron diffraction. Long-range incommensurate magnetic order sets in at TN∼_N\sim22K with propagation vector \textbf{k}=(0,0,∼\sim0.18). On cooling below TN_N, the propagation vector increases and saturates at the commensurate value \textbf{k}=(0,0,0.25). The magnetic structure below TN_N consists of ferromagnetic layers in the \textit{ab}-plane stacked in a spiral arrangement along the \textit{c}-axis. Symmetry analysis using corepresentations theory reveals a point group symmetry in the ordered magnetic phase of 422 (D4_4), which is incompatible with macroscopic ferroelectricity. This finding indicates that the spontaneous electric polarization observed experimentally cannot be coupled to the magnetic order parameter

    Trisomy 19 ependymoma, a newly recognized genetico-histological association, including clear cell ependymoma

    Get PDF
    Ependymal tumors constitute a clinicopathologically heterogeneous group of brain tumors. They vary in regard to their age at first symptom, localization, morphology and prognosis. Genetic data also suggests heterogeneity. We define a newly recognized subset of ependymal tumors, the trisomy 19 ependymoma. Histologically, they are compact lesions characterized by a rich branched capillary network amongst which tumoral cells are regularly distributed. When containing clear cells they are called clear cell ependymoma. Most trisomy 19 ependymomas are supratentorial WHO grade III tumors of the young. Genetically, they are associated with trisomy 19, and frequently with a deletion of 13q21.31-31.2, three copies of 11q13.3-13.4, and/or deletions on chromosome 9. These altered chromosomal regions are indicative of genes and pathways involved in trisomy 19 ependymoma tumorigenesis. Recognition of this genetico-histological entity allows better understanding and dissection of ependymal tumors

    The Potential for Summer-Dormant Perennial Grasses in Mediterranean and Semi-Arid Pastures

    Get PDF
    In rain-fed Mediterranean and semi-arid areas, herbage production of perennial grasses depends on their ability to grow efficiently during the rainy seasons and to persist over the dry summer. A key survival strategy in these harsh conditions is summer dormancy (Volaire, 2002). Within the species Dactylis glomerata L., two cultivars (cvs.), contrasting in this trait, were compared in order to analyse their suitability in terms of yield and survival in these environments

    Susceptibility gradient quantization by MRI signal response mapping (SIRMA) to dephaser

    Get PDF
    Purpose: Susceptibility effects are a very efficient source of contrast in magnetic resonance imaging. However, detection is hampered by the fact the induced contrast is negative. In this work, the SIgnal Response MApping (SIRMA) to dephaser method is proposed to map susceptibility gradient to improve visualization. Methods: In conventional gradient echo acquisitions, the echo formation of susceptibility affected spins is shifted in k -space, the shift being proportional to the susceptibility gradient. Susceptibility gradients map can be produced by measuring this induced shifts. The SIRMA method measures these shifts from a series of dephased images collected with additional incremental dephasers. These additional dephasers correspond either to a slice refocusing gradient offset or to a reconstruction window off-centering. The signal intensity profile as a function of the additional dephaser was determined on a pixel-by-pixel basis from the ensemble of dephased images. Susceptibility affected voxels presented a signal response profile maximum shifted compared to nonaffected voxels ones. Shift magnitude and sign were measured for each pixel to determine susceptibility gradients and produce a susceptibility gradient map. Results: In vitro experiments demonstrated the ability of the method to map gradient inhomogeneities induced by a cylinder. Quantization accuracy was evaluated comparing SIRMA images and simulations performed on the well-characterized air filled cylinder model. Performances of the SIRMA method, evaluated in vitro on cylinders filled with various superparamagnetic iron oxide SPIO concentrations, showed limited influence of acquisition parameters. Robustness of the method was then assessed in vivo after an infusion of SPIO-loaded nanocapsules into the rat brain using a convection-enhanced drug delivery approach. The region of massive susceptibility gradient induced by the SPIO-loaded nanocapsules was clearly delineated on SIRMA maps and images were compared to T 2 weighted images, Susceptibility Gradient Map (SGM), and histological Perl\u27s staining slice. The potential for quantitative evaluation of SPIO distribution volume was demonstrated. Conclusions: The proposed method is a promising technique for a wide range of applications especially in molecular or cellular imaging with respect to its quantitative nature and its computational simplicity

    Prenatal evaluation of kidney function in mice using dynamic contrast-enhanced magnetic resonance imaging

    Get PDF
    Glomerular differentiation starts as soon as embryonic stage 12 in mice and suggests that kidneys may be functional at this stage. Dynamic contrast-enhanced magnetic resonance microscopy, a noninvasive imaging technique, was used to assess renal function establishment in utero. Indeed, in adults (n = 3), an intravenous injection of gadolinium-DOTA induced in a first step a massive and rapid drop in kidney signal intensity followed, in a second step, by a drop in bladder signal intensity. The delay in signal changes between kidney and bladder reflected glomerular filtration. Pregnant mice underwent anatomical and dynamic contrast-enhanced magnetic resonance microscopy on postcoital days 12-13 (n = 2), 13-14 (n = 1), 14-15 (n = 3), 15-16 (n = 2), 16-17 (n = 3), 17-18 (n = 3), and 18-19 (n = 1). Kidneys and bladder were unambiguously depicted prior to contrast agent injection on stage 15-16 embryos. Contrast agent injection allowed kidney, detection as early as stage 12-13 but not bladder. Kinetics of signal changes demonstrated that glomerular filtration is established at embryonic stage 15-16 in mice. Thus, anatomical and dynamic contrast-enhanced magnetic resonance microscopy may be a powerful noninvasive method for in vivo prenatal developmental and functional studies

    Quantitative MR renography using a calibrated internal signal (ERETIC)

    Get PDF
    To measure MR renograms, cortical and medullary kidney signal intensity evolution is followed after contrast agent injection. To obtain an accurate quantitative signal measurement, the use of a reference signal is necessary to correct the potential MRI system variations in time. The ERETIC method (Electronic Reference To access In vivo Concentrations) provides an electronic reference signal. It is synthesized as an amplitude modulated RF pulse applied during the acquisition. The ERETIC method was as precise as the external tube reference method but presents major advantages like its free adjustability (shape, location and magnitude) to the characteristics of the organ studied as well as its not taking room inside the magnet. Even though ERETIC showed a very good intrinsic stability, systems’ variations still affect its signal in the same way as real NMR signals are affected. This method can be easily implemented on any imaging system with two RF channels

    Volumetric assessment of myocardial viability in rats using 3D double contrast enhanced T1 and T2-weighted MRI

    Get PDF
    OBJECTIVE: Volumetric evaluation of the myocardial viability post-infarction in rats using 3D in vivo MR imaging at 7 T using injection of an extracellular paramagnetic contrast agent and intravascular superparamagnetic iron oxide nanoparticles in the same imaging session. MATERIALS AND METHODS: Five hours after induction of permanent myocardial infarction in rats (n=6), 3D in vivo T1- and T2-weighted MR Imaging was performed prior to and after Gd-DOTA injection (0.2 mmol/kg) and prior to and after nanoparticle injection (5 mg Fe/kg) to assess infarct size and myocardial viability. RESULTS: 3D MR Imaging using a successive contrast agent injection showed a difference of infarct size after Gd-DOTA injection on T1-weighted images compared to the one measured on T2-weighted images after Gd-DOTA and nanoparticle injection. CONCLUSION: The use of 3D T1- and T2-weighted MR Imaging using a double contrast agents protocol made possible the accurate characterization of myocardial infarction volume and allowed the detection of myocardial viability post-infarction in rats

    Assessment of myocardial viability in rats: Evaluation of a new method using superparamagnetic iron oxide nanoparticles and Gd-DOTA at high magnetic field

    Get PDF
    The aim of this study was to detect salvageable peri-infarction myocardium by MRI in rats after infarction, using with a double contrast agent (CA) protocol at 7 Tesla. Intravascular superparamagnetic iron oxide (SPIO) nanoparticles and an extracellular paramagnetic CA (Gd-DOTA) were used to characterize the peri-infarction zone, which may recover function after reperfusion occurs. Infarcted areas measured from T1-weighted (T1-w) images post Gd-DOTA administration were overestimated compared to histological TTC staining (52% +/- 3% of LV surface area vs. 40% +/- 3%, P=0.03) or to T2-w images post SPIO administration (41% +/- 4%, P=0.04), whereas areas measured from T2-w images post SPIO administration were not significantly different from those measured histologically (P=0.7). Viable and nonviable myocardium portions of ischemically injured myocardium were enhanced after diffusive Gd-DOTA injection. The subsequent injection of vascular SPIO nanoparticles enables the discrimination of viable peri-infarction regions by specifically altering the signal of the still-vascularized myocardium

    Helical spin-waves, magnetic order, and fluctuations in the langasite compound Ba3NbFe3Si2O14

    Get PDF
    We have investigated the spin fluctuations in the langasite compound Ba3NbFe3Si2O14 in both the ordered state and as a function of temperature. The low temperature magnetic structure is defined by a spiral phase characterized by magnetic Bragg peaks at q=(0,0,tau ~ 1/7) onset at TN=27 K as previously reported by Marty et al. The nature of the fluctuations and temperature dependence of the order parameter is consistent with a classical second order phase transition for a two dimensional triangular antiferromagnet. We will show that the physical properties and energy scales including the ordering wavevector, Curie-Weiss temperature, and the spin-waves can be explained through the use of only symmetric exchange constants without the need for the Dzyaloshinskii-Moriya interaction. This is accomplished through a set of ``helical" exchange pathways along the c direction imposed by the chiral crystal structure and naturally explains the magnetic diffuse scattering which displays a strong vector chirality up to high temperatures well above the ordering temperature. This illustrates a strong coupling between magnetic and crystalline chirality in this compound.Comment: 16 pages, 16 figures, submitted to Physical Review
    • …
    corecore