50 research outputs found

    Landau level spectroscopy of surface states in the topological insulator Bi0.91_{0.91}Sb0.09_{0.09} via magneto-optics

    Full text link
    We have performed broad-band zero-field and magneto-infrared spectroscopy of the three dimensional topological insulator Bi0.91_{0.91}Sb0.09_{0.09}. The zero-field results allow us to measure the value of the direct band gap between the conducting LaL_a and valence LsL_s bands. Under applied field in the Faraday geometry (\emph{k} || \emph{H} || C1), we measured the presence of a multitude of Landau level (LL) transitions, all with frequency dependence ωH\omega \propto \sqrt{H}. We discuss the ramification of this observation for the surface and bulk properties of topological insulators.Comment: 7 pages, 8 figures, March Meeting 2011 Abstract: J35.0000

    Infrared nano-spectroscopy and imaging of collective superfluid excitations in conventional and high-temperature superconductors

    Get PDF
    We investigate near-field infrared spectroscopy and superfluid polariton imaging experiments on conventional and unconventional superconductors. Our modeling shows that near-field spectroscopy can measure the magnitude of the superconducting energy gap in Bardeen-Cooper-Schrieffer-like superconductors with nanoscale spatial resolution. We demonstrate how the same technique can measure the c-axis plasma frequency, and thus the c-axis superfluid density, of layered unconventional superconductors with a similar spatial resolution. Our modeling also shows that near-field techniques can image superfluid surface mode interference patterns near physical and electronic boundaries. We describe how these images can be used to extract the collective mode dispersion of anisotropic superconductors with sub-diffractional spatial resolution.Comment: 11 pages, 8 figure

    Infrared conductivity of hole accumulation and depletion layers in (Ga,Mn)As- and (Ga,Be)As-based electric field-effect devices

    Full text link
    We have fabricated electric double-layer field-effect devices to electrostatically dope our active materials, either xx=0.015 Ga1x_{1-x}Mnx_xAs or xx=3.2×104\times10^{-4} Ga1x_{1-x}Bex_xAs. The devices are tailored for interrogation of electric field induced changes to the frequency dependent conductivity in the accumulation or depletions layers of the active material via infrared (IR) spectroscopy. The spectra of the (Ga,Be)As-based device reveal electric field induced changes to the IR conductivity consistent with an enhancement or reduction of the Drude response in the accumulation and depletion polarities, respectively. The spectroscopic features of this device are all indicative of metallic conduction within the GaAs host valence band (VB). For the (Ga,Mn)As-based device, the spectra show enhancement of the far-IR itinerant carrier response and broad mid-IR resonance upon hole accumulation, with a decrease of these features in the depletion polarity. These later spectral features demonstrate that conduction in ferromagnetic (FM) Ga1x_{1-x}Mnx_xAs is distinct from genuine metallic behavior due to extended states in the host VB. Furthermore, these data support the notion that a Mn-induced impurity band plays a vital role in the electron dynamics of FM Ga1x_{1-x}Mnx_xAs. We add, a sum-rule analysis of the spectra of our devices suggests that the Mn or Be doping does not lead to a substantial renormalization of the GaAs host VB

    An infrared probe of the insulator-to-metal transition in GaMnAs and GaBeAs

    Full text link
    We report infrared studies of the insulator-to-metal transition (IMT) in GaAs doped with either magnetic (Mn) or non-magnetic acceptors (Be). We observe a resonance with a natural assignment to impurity states in the insulating regime of Ga1x_{1-x}Mnx_xAs, which persists across the IMT to the highest doping (16%). Beyond the IMT boundary, behavior combining insulating and metallic trends also persists to the highest Mn doping. Be doped samples however, display conventional metallicity just above the critical IMT concentration, with features indicative of transport within the host valence band

    Tunable hot-carrier photodetection beyond the bandgap spectral limit

    Get PDF
    The spectral response of common optoelectronic photodetectors is restricted by a cutoff wavelength limit λ that is related to the activation energy (or bandgap) of the semiconductor structure (or material) (Δ) through the relationship λ = hc/Δ. This spectral rule dominates device design and intrinsically limits the long-wavelength response of a semiconductor photodetector. Here, we report a new, long-wavelength photodetection principle based on a hot-cold hole energy transfer mechanism that overcomes this spectral limit. Hot carriers injected into a semiconductor structure interact with cold carriers and excite them to higher energy states. This enables a very long-wavelength infrared response. In our experiments, we observe a response up to 55 μm, which is tunable by varying the degree of hot-hole injection, for a GaAs/AlGaAs sample with Δ = 0.32 eV (equivalent to 3.9 μm in wavelength)

    O2 extraction by hind limb versus whole dog during anemic hypoxia

    No full text

    Glycogen distribution in dog skeletal muscle.

    No full text
    corecore