178 research outputs found

    Mechanistic insights into the role of microRNAs in cancer: influence of nutrient crosstalk

    Get PDF
    A plethora of studies have described the disruption of key cellular regulatory mechanisms involving non-coding RNAs, specifically microRNAs (miRNA) from the let-7 family, the miR-17 family, miR-21, miR-143, and the miR-200 family, which contribute to aberrant signaling and tumor formation. Certain environmental factors, such as bioactive dietary agents, e.g., folate, curcumin, polyunsaturated fatty acids, are also thought to impact the progression and severity of cancer. In terms of the chemoprotective mechanisms of action, these bioactive dietary agents appear to act, in part, by modulating tissue levels of miR-16, miR-17 family, miR-26b, miR-106b, and miR-200 family miRNAs and their target genes. However, the mechanisms of nutrient action are not yet fully understood. Therefore, additional characterization of the putative underlying mechanisms is needed to further our understanding of the biology, early diagnosis, prevention, and the treatment of cancer. For the purpose of elucidating the epigenetic landscape of cancer, this review will summarize the key findings from recent studies detailing the effect of bioactive dietary agents on miRNA regulation in cancer

    Characterization of the Effectiveness of Reporting Lists of Small Feature Sets Relative to the Accuracy of the Prior Biological Knowledge

    Get PDF
    When confronted with a small sample, feature-selection algorithms often fail to find good feature sets, a problem exacerbated for high-dimensional data and large feature sets. The problem is compounded by the fact that, if one obtains a feature set with a low error estimate, the estimate is unreliable because training-data-based error estimators typically perform poorly on small samples, exhibiting optimistic bias or high variance. One way around the problem is limit the number of features being considered, restrict features sets to sizes such that all feature sets can be examined by exhaustive search, and report a list of the best performing feature sets. If the list is short, then it greatly restricts the possible feature sets to be considered as candidates; however, one can expect the lowest error estimates obtained to be optimistically biased so that there may not be a close-to-optimal feature set on the list. This paper provides a power analysis of this methodology; in particular, it examines the kind of results one should expect to obtain relative to the length of the list and the number of discriminating features among those considered. Two measures are employed. The first is the probability that there is at least one feature set on the list whose true classification error is within some given tolerance of the best feature set and the second is the expected number of feature sets on the list whose true errors are within the given tolerance of the best feature set. These values are plotted as functions of the list length to generate power curves. The results show that, if the number of discriminating features is not too small—that is, the prior biological knowledge is not too poor—then one should expect, with high probability, to find good feature sets

    Evaluation of fecal mRNA reproducibility via a marginal transformed mixture modeling approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Developing and evaluating new technology that enables researchers to recover gene-expression levels of colonic cells from fecal samples could be key to a non-invasive screening tool for early detection of colon cancer. The current study, to the best of our knowledge, is the first to investigate and report the reproducibility of fecal microarray data. Using the intraclass correlation coefficient (ICC) as a measure of reproducibility and the preliminary analysis of fecal and mucosal data, we assessed the reliability of mixture density estimation and the reproducibility of fecal microarray data. Using Monte Carlo-based methods, we explored whether ICC values should be modeled as a beta-mixture or transformed first and fitted with a normal-mixture. We used outcomes from bootstrapped goodness-of-fit tests to determine which approach is less sensitive toward potential violation of distributional assumptions.</p> <p>Results</p> <p>The graphical examination of both the distributions of ICC and probit-transformed ICC (PT-ICC) clearly shows that there are two components in the distributions. For ICC measurements, which are between 0 and 1, the practice in literature has been to assume that the data points are from a beta-mixture distribution. Nevertheless, in our study we show that the use of a normal-mixture modeling approach on PT-ICC could provide superior performance.</p> <p>Conclusions</p> <p>When modeling ICC values of gene expression levels, using mixture of normals in the probit-transformed (PT) scale is less sensitive toward model mis-specification than using mixture of betas. We show that a biased conclusion could be made if we follow the traditional approach and model the two sets of ICC values using the mixture of betas directly. The problematic estimation arises from the sensitivity of beta-mixtures toward model mis-specification, particularly when there are observations in the neighborhood of the the boundary points, 0 or 1. Since beta-mixture modeling is commonly used in approximating the distribution of measurements between 0 and 1, our findings have important implications beyond the findings of the current study. By using the normal-mixture approach on PT-ICC, we observed the quality of reproducible genes in fecal array data to be comparable to those in mucosal arrays.</p

    Overexpression of Protein Kinase C βII Induces Colonic Hyperproliferation and Increased Sensitivity to Colon Carcinogenesis

    Get PDF
    Protein kinase C βII (PKC βII) has been implicated in proliferation of the intestinal epithelium. To investigate PKC βII function in vivo, we generated transgenic mice that overexpress PKC βII in the intestinal epithelium. Transgenic PKC βII mice exhibit hyperproliferation of the colonic epithelium and an increased susceptibility to azoxymethane-induced aberrant crypt foci, preneoplastic lesions in the colon. Furthermore, transgenic PKC βII mice exhibit elevated colonic β-catenin levels and decreased glycogen synthase kinase 3β activity, indicating that PKC βII stimulates the Wnt/adenomatous polyposis coli (APC)/β-catenin proliferative signaling pathway in vivo. These data demonstrate a direct role for PKC βII in colonic epithelial cell proliferation and colon carcinogenesis, possibly through activation of the APC/β-catenin signaling pathway

    Non-invasive analysis of intestinal development in preterm and term infants using RNA-Sequencing

    Get PDF
    The state and development of the intestinal epithelium is vital for infant health, and increased understanding in this area has been limited by an inability to directly assess epithelial cell biology in the healthy newborn intestine. To that end, we have developed a novel, noninvasive, molecular approach that utilizes next generation RNA sequencing on stool samples containing intact epithelial cells for the purpose of quantifying intestinal gene expression. We then applied this technique to compare host gene expression in healthy term and extremely preterm infants. Bioinformatic analyses demonstrate repeatable detection of human mRNA expression, and network analysis shows immune cell function and inflammation pathways to be up-regulated in preterm infants. This study provides incontrovertible evidence that whole-genome sequencing of stool-derived RNA can be used to examine the neonatal host epithelial transcriptome in infants, which opens up opportunities for sequential monitoring of gut gene expression in response to dietary or therapeutic interventions

    n-3 polyunsaturated fatty acids suppress CD4+ T cell proliferation by altering phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] organization

    Get PDF
    AbstractThe mechanisms by which n-3 polyunsaturated fatty acids (n-3 PUFA), abundant in fish oil, exert their anti-inflammatory effects have not been rigorously defined. We have previously demonstrated that n-3 PUFA decrease the amount of phosphatidylinositol-(4,5)-bisphosphate, [PI(4,5)P2], in CD4+ T cells, leading to suppressed actin remodeling upon activation. Since discrete pools of PI(4,5)P2 exist in the plasma membrane, we determined whether n-3 PUFA modulate spatial organization of PI(4,5)P2 relative to raft and non-raft domains. We used Förster resonance energy transfer (FRET) to demonstrate that lipid raft mesodomains in the plasma membrane of CD4+ T cells enriched in n-3 PUFA display increased co-clustering of Lck(N10) and LAT(ΔCP), markers of lipid rafts. CD4+ T cells enriched in n-3 PUFA also exhibited a depleted plasma membrane non-raft PI(4,5)P2 pool as detected by decreased co-clustering of Src(N15), a non-raft marker, and PH(PLC-δ), a PI(4,5)P2 reporter. Incubation with exogenous PI(4,5)P2 rescued the effects on the non-raft PI(4,5)P2 pool, and reversed the suppression of T cell proliferation in CD4+ T cells enriched with n-3 PUFA. Furthermore, CD4+ T cells isolated from mice fed a 4% docosahexaenoic acid (DHA)-enriched diet exhibited a decrease in the non-raft pool of PI(4,5)P2, and exogenous PI(4,5)P2 reversed the suppression of T cell proliferation. Finally, these effects were not due to changes to post-translational lipidation, since n-3 PUFA did not alter the palmitoylation status of signaling proteins. These data demonstrate that n-3 PUFA suppress T cell proliferation by altering plasma membrane topography and the spatial organization of PI(4,5)P2

    Antagonizing Arachidonic Acid-Derived Eicosanoids Reduces Inflammatory Th17 and Th1 Cell-Mediated Inflammation and Colitis Severity

    Get PDF
    During colitis, activation of two inflammatory T cell subsets, Th17 and Th1 cells, promotes ongoing intestinal inflammatory responses. n-6 polyunsaturated fatty acid- (PUFA-) derived eicosanoids, such as prostaglandin E2 (PGE2), promote Th17 cell-mediated inflammation, while n-3 PUFA antagonize both Th17 and Th1 cells and suppress PGE2 levels. We utilized two genetic mouse models, which differentially antagonize PGE2 levels, to examine the effect on Th17 cells and disease outcomes in trinitrobenzene sulfonic acid- (TNBS-) induced colitis. Fat-1 mice contain the ω3 desaturase gene from C. elegans and synthesize n-3 PUFA de novo, thereby reducing the biosynthesis of n-6 PUFA-derived eicosanoids. In contrast, Fads1 Null mice contain a disrupted Δ5 desaturase gene and produce lower levels of n-6 PUFA-derived eicosanoids. Compared to Wt littermates, Fat-1 and Fads1 Null mice exhibited a similar colitic phenotype characterized by reduced colonic mucosal inflammatory eicosanoid levels and mRNA expression of Th17 cell markers (IL-17A, RORγτ, and IL-23), decreased percentages of Th17 cells and, improved colon injury scores (P≤0.05). Thus, during colitis, similar outcomes were obtained in two genetically distinct models, both of which antagonize PGE2 levels via different mechanisms. Our data highlight the critical impact of n-6 PUFA-derived eicosanoids in the promotion of Th17 cell-mediated colonic inflammation

    A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response

    Get PDF
    BACKGROUND: Gut microbiota and the host exist in a mutualistic relationship, with the functional composition of the microbiota strongly affecting the health and well-being of the host. Thus, it is important to develop a synthetic approach to study the host transcriptome and the microbiome simultaneously. Early microbial colonization in infants is critically important for directing neonatal intestinal and immune development, and is especially attractive for studying the development of human-commensal interactions. Here we report the results from a simultaneous study of the gut microbiome and host epithelial transcriptome of three-month-old exclusively breast- and formula-fed infants. RESULTS: Variation in both host mRNA expression and the microbiome phylogenetic and functional profiles was observed between breast- and formula-fed infants. To examine the interdependent relationship between host epithelial cell gene expression and bacterial metagenomic-based profiles, the host transcriptome and functionally profiled microbiome data were subjected to novel multivariate statistical analyses. Gut microbiota metagenome virulence characteristics concurrently varied with immunity-related gene expression in epithelial cells between the formula-fed and the breast-fed infants. CONCLUSIONS: Our data provide insight into the integrated responses of the host transcriptome and microbiome to dietary substrates in the early neonatal period. We demonstrate that differences in diet can affect, via gut colonization, host expression of genes associated with the innate immune system. Furthermore, the methodology presented in this study can be adapted to assess other host-commensal and host-pathogen interactions using genomic and transcriptomic data, providing a synthetic genomics-based picture of host-commensal relationships

    Fatty Acid Desaturase 1 Influences Hepatic Lipid Homeostasis by Modulating the PPARα‐FGF21 Axis

    Get PDF
    The fatty acid desaturase 1 (FADS1), also known as delta-5 desaturase (D5D), is one of the rate-limiting enzymes involved in the desaturation and elongation cascade of polyunsaturated fatty acids (PUFAs) to generate long-chain PUFAs (LC-PUFAs). Reduced function of D5D and decreased hepatic FADS1 expression, as well as low levels of LC-PUFAs, were associated with nonalcoholic fatty liver disease. However, the causal role of D5D in hepatic lipid homeostasis remains unclear. In this study, we hypothesized that down-regulation of FADS1 increases susceptibility to hepatic lipid accumulation. We used in vitro and in vivo models to test this hypothesis and to delineate the molecular mechanisms mediating the effect of reduced FADS1 function. Our study demonstrated that FADS1 knockdown significantly reduced cellular levels of LC-PUFAs and increased lipid accumulation and lipid droplet formation in HepG2 cells. The lipid accumulation was associated with significant alterations in multiple pathways involved in lipid homeostasis, especially fatty acid oxidation. These effects were demonstrated to be mediated by the reduced function of the peroxisome proliferator-activated receptor alpha (PPARα)-fibroblast growth factor 21 (FGF21) axis, which can be reversed by treatment with docosahexaenoic acid, PPARα agonist, or FGF21. In vivo, FADS1-knockout mice fed with high-fat diet developed increased hepatic steatosis as compared with their wild-type littermates. Molecular analyses of the mouse liver tissue largely corroborated the observations in vitro, especially along with reduced protein expression of PPARα and FGF21. Conclusion: Collectively, these results suggest that dysregulation in FADS1 alters liver lipid homeostasis in the liver by down-regulating the PPARα-FGF21 signaling axis
    corecore