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The mechanisms by which n-3 polyunsaturated fatty acids (n-3 PUFA), abundant in fish oil, exert their anti-
inflammatory effects have not been rigorously defined. We have previously demonstrated that n-3 PUFA de-
crease the amount of phosphatidylinositol-(4,5)-bisphosphate, [PI(4,5)P2], in CD4+ T cells, leading to suppressed
actin remodeling upon activation. Since discrete pools of PI(4,5)P2 exist in the plasmamembrane,we determined
whether n-3 PUFAmodulate spatial organization of PI(4,5)P2 relative to raft and non-raft domains.We used För-
ster resonance energy transfer (FRET) to demonstrate that lipid raft mesodomains in the plasma membrane of
CD4+ T cells enriched in n-3 PUFA display increased co-clustering of Lck(N10) and LAT(ΔCP), markers of lipid
rafts. CD4+ T cells enriched in n-3 PUFA also exhibited a depleted plasma membrane non-raft PI(4,5)P2 pool as
detected by decreased co-clustering of Src(N15), a non-raft marker, and PH(PLC-δ), a PI(4,5)P2 reporter. Incuba-
tion with exogenous PI(4,5)P2 rescued the effects on the non-raft PI(4,5)P2 pool, and reversed the suppression of
T cell proliferation in CD4+ T cells enrichedwith n-3 PUFA. Furthermore, CD4+ T cells isolated frommice fed a 4%
docosahexaenoic acid (DHA)-enriched diet exhibited a decrease in the non-raft pool of PI(4,5)P2, and exogenous
PI(4,5)P2 reversed the suppression of T cell proliferation. Finally, these effects were not due to changes to post-
translational lipidation, since n-3 PUFA did not alter the palmitoylation status of signaling proteins. These data
demonstrate that n-3 PUFA suppress T cell proliferation by altering plasmamembrane topography and the spatial
organization of PI(4,5)P2.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The fluid-mosaic membrane concept first proposed in 1972 [1] has
evolved froma composition of dynamic proteins dissolved in a viscous so-
lution of lipids to a model where higher order structures involving
ein succinimidyl ester; DAG,
nced cyan fluorescent protein;
id; FRAP, fluorescence recovery
y transfer; IS, immunological
pidium iodide; PI(4,5)P2, phos-
st; TLC, thin layer chromatogra-

Texas A&M University, College
protein–protein, protein–lipid, and lipid–lipid interactions, in conjunction
with themembrane cytoskeletonnetwork, coordinate the spatiotemporal
organization of signaling events [1–4]. Lipid rafts are mesoscale domains
enriched in sphingolipids, cholesterol, and saturated fatty acids that
form in the plasma membrane as a result of favorable lipid–lipid interac-
tions. Mounting evidence underscores the importance of the interaction
between the lipids in the plasma membrane and protein function [5,6].
Fromabiophysical perspective, changes to theplasmamembraneproper-
ties such as bilayer thickness, membrane curvature, bilayer elasticity, and
membrane stretching, can allosterically regulatemembrane protein func-
tion [5,6]. Recently, it has becomeevident that verymodest changes to the
plasmamembrane canhave biological effects. For example, in the fly pho-
toreceptor system, activation of rhodopsin by light results in the hydroly-
sis of PI(4,5)P2 into diacylglycerol (DAG) [7]. Simplistic estimates suggest
that the conversion of PI(4,5)P2 into DAG only reduces the membrane
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area by 0.8% and contracts themicrovillus of thefly photoreceptor system
by 0.2 nm [7]. However, this “small” change is sufficient to activate TRP
channels in the fly photoreceptor system to modulate the photomechan-
ical response, and lead to the micrometer contraction of the photorecep-
tor system [6,7].

The protein and lipid composition of lipid rafts is highly heteroge-
neous and dynamic; lipid rafts are known to coalesce to form micro-
scopic signaling platforms in response to several stimuli. This is most
evident during CD4+ T cell activation, a process that involves major re-
arrangements of the T cell proteome and lipidome [8,9]. Engagement of
the TCRwith an antigen peptide displayed byMHCII of an APC results in
the formation of a higher ordered structure termed the immunological
synapse (IS) [8–10]. Signaling at the IS is highly coordinated through
the temporally ordered recruitment of signaling-propagating, and ex-
clusion of signaling-terminating, proteins [11,12]. Raft lipid constitu-
ents, including cholesterol, saturated phosphatidylcholine species, and
sphingolipids, are also enriched at the IS [13–15]. Collectively, these
findings underscore the importance of protein–protein, protein–lipid,
and lipid–lipid interactions at mesoscale membrane domains for effec-
tive T cell activation [15].

Dietary fish oil, enriched in long chain n-3 polyunsaturated fatty acids
(n-3 PUFA) such as eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17) and
docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19), has been shown to exert
anti-inflammatory and immunosuppressive effects across a spectrum of
human diseases [16–18]. Using two strategies for the enrichment of n-3
PUFA at the membrane, including dietary supplementation [19,20] and
the transgenic Fat-1 mouse model [21,22], we have previously demon-
strated that early signaling events critical to T cell activation are sup-
pressed. In particular, plasma membrane enrichment of n-3 PUFA
restricted phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]-depen-
dent actin remodeling, calcium signaling, andmitochondrial translocation
to the IS, resulting in the suppression of T cell activation (lymphoprolifer-
ation) [14,19,23,24]. Additional studies in Jurkat cells have shown that
other chemicals such as 7-ketocholesterol that modulate the biophysical
properties of the plasma membrane, can also suppress T cell activation
[15,25]. Together, these findings clearly demonstrate that by incorporat-
ing into the plasmamembrane, n-3 PUFA can target a key lipid mediator,
PI(4,5)P2, and affect cortical actin, two interplaying components regulat-
ing membrane-cytoskeletal interactions critical for lymphoproliferation.

From a biophysical perspective, DHA is highly disordered and has
low affinity for saturated fatty acids and cholesterol, constituents of
lipid rafts [26–29]. Previous findings indicate that the insertion of
DHA-containing phospholipids into the plasma membrane enlarges
lipid raft domains while concomitantly decreasing the amount of cho-
lesterol and saturated fatty acids [30,31]. We have previously demon-
strated that n-3 PUFA increase the lipid order/rigidity of the plasma
membrane in vivo [13,14,32], and affect downstream T cell responses
to IL-2 [14,21,33]; therefore, we hypothesized that n-3 PUFA suppress
T cell signaling and activation by modifying the membrane topography
and spatial organization of PI(4,5)P2. Here we demonstrate that n-3
PUFA modify the biophysical properties of the plasma membrane and
alter the spatial distribution of PI(4,5)P2, a critical phospholipid in-
volved in the organization of membrane mesodomains and the
membrane-associated cytoskeletal network. Of significance, n-3 PUFA-
induced reorganization of membrane mesodomains results in suppres-
sion of clonal expansion upon activation of primary CD4+ T cells. These
results highlight previously unappreciated effects of n-3 PUFA onmem-
brane organization that, bymodulating early TCR signaling, lead to sup-
pression of T cell proliferation.

2. Materials and methods

2.1. Plasmids

Enhanced cyan fluorescent protein (ECFP), and yellow fluores-
cent protein for energy transfer (YPet) were synthesized by
Integrated DNA Technologies (Coralville, Iowa) into pIDTSMART
and subcloned into pLenti vector using BamHI and NotI (New En-
gland Biolabs, Ipswich, MA). A NheI site was included immediately
downstream of BamHI for insertion of additional fragments. cDNA
containing the first 10 amino acids of Lck [Lck(N10)], the first 15
amino acids of Src [Src(N15)], the transmembrane domain of linker
for activation of T cells [LAT(ΔCP)], and the PH domain of
phospholipase-δ [PH(PLC-δ)], were synthesized and subcloned into
pLenti using BamHI and NheI restriction sites, upstream and in-
frame to ECFP or YPet. All plasmids were verified by sequencing
(Eton Bioscience, San Diego, CA), and expressed as fusion probes in
293T cells followed by examination using microscopy and Western
blotting. R40L mutant of PH(PLC-δ) was generated by using the
Quikchange II Kit (Agilent, Santa Clara, CA), confirmed by sequenc-
ing, and expressed in 293T cells.
2.2. Generation of lentivirus

Lentivirus was generated as previously described with minor modi-
fications [34,35]. Individual pLenti constructs were co-transfected with
pLP-1, pLP-2, and pVSV-G (Life Technologies, Grand Island, NY) into
HEK293T/17 (ATCC CRL-11,268) using calcium phosphate precipitation.
Medium containing the virus was harvested three times within 72 h of
transfection. Lentivirus was then concentrated using a concentrator
(Clontech, Mountain View, CA), resuspended in RPMImedia (Irvine Sci-
entific, Santa Ana, CA) containing 5% fetal bovine serum (Irvine Scientif-
ic), 1% GlutaMAX (Life Technologies), and 1% penicillin–streptomycin
(Life Technologies), and stored at−80 °C.
2.3. Animal husbandry and CD4+ T cell isolation

Animal protocol for this study (AUP #2011–176) was approved
by the Institutional Animal Care and Use Committee at Texas A&M
University following the U.S. Public Health Service guidelines. Fat-1
transgenic mice on a C57BL/6 background, generously provided by
Dr. Jing X. Kang (Department of Medicine, Harvard University,
[22]), were bred, genotyped, and phenotyped as previously de-
scribed [14,23,24]. Wild type and Fat-1 litter-mate controls were
fed a 10% safflower diet (Research Diets, New Brunswick, NJ) ad
libitum in a 12:12 light:dark cycle. In diet experiments, 4 to
6 weeks old C57BL/6 mice were fed either an n-6 PUFA enriched 5%
corn oil diet, a 0.95% DHA triglyceride-, or a 4% DHA triglyceride-
enriched diet as previously described [13,23]. Briefly, diets differed
only in their oil composition, either (control) 5% corn oil by weight
or a mixture of 57% pure DHA triglyceride (Martek, Columbia, MD)
and corn oil (0.95:3:05, or 4:1 w/w). Additional diet components,
expressed as g/100 g, were 20 casein, 42 sucrose, 22 corn starch, 6
cellulose, 3.5 AIN-76 mineral mix, 1 AIN-76 vitamin mix, 0.3 DL-
methionine, 0.2 choline chloride, and 5 dietary oil (Table 1). Mice
were fed ad libitum for 6 to 8 weeks using a 12:12 light:dark cycle
[19,20,36] and diet was changed daily to prevent the formation of
oxidative byproducts.

CD4+ T cells were purified by removing the spleen aseptically and
labeling with magnetic CD4 (L3T4) microbeads according to
manufacturer's protocol (Miltenyi Biotec, Auburn, CA). CD4+ T cells
were cultured in complete RPMI media containing 20 μM 2-
mercaptoethanol (Sigma Aldrich, St. Louis, MO), until the start of the
downstream assay (within hrs). For longer experiments (within 48 h),
20 ng/mL of rIL-2 (eBioscience, San Diego, CA) was added to the com-
plete RPMI media. For rescue experiments using exogenous PI(4,5)P2,
cells were treated after lentiviral transduction with PI(4,5)P2 dissolved
in 1× PBS supplemented with 0.0025% of protein stabilizer (Echelon
Biosciences, Salt Lake City, UT) for 1 h, at 37 °C, 5% CO2, collected, and
washed prior to initiation of FRET experiments.



Table 1
Diet composition.

g/100 g 5% corn oil 0.95% DHA triglyceride 4% DHA triglyceride

Casein 20 20 20
Sucrose 42 42 42
Corn starch 22 22 22
Cellulose 6 6 6
AIN-76 mineral mix 3.5 3.5 3.5
AIN-76 vitamin mix 1 1 1
DL-Methionine 0.3 0.3 0.3

Choline chloride 0.2 0.2 0.2
Corn oil 5 4.05 1
DHA triglyceride 0 0.95 4
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2.4. Lentiviral transduction

CD4+ T cells were resuspended to a final concentration of
7.5 × 106 cells/mL, seeded into a 24 well plate and incubated with
lentivirus for 48 h before imaging in the presence of 2 μg/mL
polybrene (Sigma Aldrich). Typically ECFP-containing lentivirus
was added 8 h prior to YPet lentivirus to optimize the level of the
fluorophores for imaging. After 48 h of incubation, CD4+ T cells
were collected, washed, resuspended in 300 μL of Leibovitz's
media, and seeded onto poly-L-lysine coated 35 mm glass bottom
dishes (MatTek, Ashland, MA) for imaging.

2.5. Microscopy and image analysis

FRET experiments were conducted using the Zeiss LSM 510 META
laser scanning confocal microscope with an excitation at 458 nm for
ECFP, and 514 nm for YPet using an argon laser. Emissions were detect-
ed between 480 and 520 nm for ECFP, and between 535 and 590 nm for
YPet. Samples were imaged with a 63× oil objective with a numerical
aperture of 1.2, and recorded in 8-bit mode. Images were processed
using the accompanying software and values were exported and ana-
lyzed in Microsoft Excel.

FRET was analyzed by acceptor photobleaching to detect the increase
in ECFP signal. A region of interest (ROI) consisting of 4 μm × 3 μm was
drawn around the plasma membrane, and photobleaching was conduct-
ed by illuminating theROI for 16 swith the laser. For each cell, four images
were recorded: i) YFPPRE, YPet fluorescence before photobleaching;
ii) CFPPre, ECFP fluorescence before photobleaching; iii) YFPPost, YPet fluo-
rescence after photobleaching; and iv) CFPPost, ECFP fluorescence after
photobleaching. Corrections to the fluorescence intensities were also
made by conducting acceptor photobleaching on cells expressing only
the ECFP and YPet probes to determine the bleaching of ECFP during
photobleaching (CFPBleach), and the bleed-through of YPet into the CFP
channel (CFPYFP). Corrections to the CFP intensities before and after
photobleaching were calculated as follows:

CFPPre;Corrected¼ CFPPre–CFPYFPBleed ð1Þ

CFPPost;Corrected ¼ CFPPost−CFPYFPð Þ þ CFPBleach: ð2Þ

Todetermine the FRET efficiency (E%), the correctedCFP valueswere
used in the following equation:

E% ¼ CFPPost;Corrected � CFPPre;Corrected
CFPPost;Corrected

X100: ð3Þ

To determine fluorescence recovery after photobleaching (FRAP),
the following equation was used to analyze cells expressing only the
YPet probe where F(t) is fluorescence intensity at time (t), F(∞) is the
fluorescence intensity after recovery, F(0) is the initial fluorescence
intensity, and k is the rate of fluorescence intensity recovery after
photobleaching:

F tð Þ ¼ F ∞ð Þ � F 0ð Þ½ � � 1� exp �ktð Þ½ � þ F 0ð Þ: ð4Þ

At least 4 animals per genotype/treatment, and at least 10 cells per
animal were analyzed for each FRET combination.

2.6. CFSE assay

After CD4+ T cell isolation, cells were labeledwith CFSE as previous-
ly described [14,21]. In brief, 5 μM of CFSE (Life Technologies) in DMSO
was added into 1 × 106 cells/mL in 1× PBS (Life Technologies) contain-
ing 0.1% BSA (RocheDiagnostics, Indianapolis, IN), incubated at 37 °C for
30 min, rapidly chilled by adding an excess of ice-cold complete RPMI,
and incubated for 5 min on ice. Cells were collected, washed with 1×
PBS, and resuspended to a final cell concentration of 2 × 106 cells/mL.
2 × 105 cells were cultured in 96 well plates either unstimulated or
stimulated with plated anti-CD3 (Clone 145-2C11, 0.2 μg/mL,
eBiosciences) and soluble anti-CD28 (Clone 37.51, 1 μg/mL,
eBiosciences) for 72 h, at 37 °C. On the day of analysis, cells were collect-
ed, washed with 1× PBS, and resuspended in staining buffer
(eBioscience) containing 1 μg/mL of propidium iodide (PI, Miltenyi
Biotec). Samples were processed using a BD Accuri C6 flow cytometer
(BD Bioscience, San Joe, CA). The Proliferation Index, representing the
sum of cells in all generations divided by the theoretical parental popu-
lation at the start of the experiment, was calculated using ModFitLT 3.2
[37].

2.7. Membrane phospholipid analysis

Phospholipid fatty acid composition was analyzed as previously de-
scribed [21]. Briefly, total lipids were extracted from CD4+ T cells using
Folch (chloroform:methanol, 2:1 v/v), and separated by thin layer chro-
matography (TLC) on silica gel 60G plates using the developing solvent
of chloroform/methanol/acetic acid/water (90:8:1:0.8, v/v). The plate
was then sprayed with 0.1% 8-anilino-naphthalene-sulfonic acid and
visualized under ultraviolet light. Total phospholipids were scraped
from the plates, spiked with heptadecanoic acid (17:0), and
transesterified in the presence of 6% methanol-HCl. Afterwards, fatty
acid methyl esters were extracted using hexane and 0.1 M potassium
chloride and analyzed by gas chromatography.

2.8. Detection of protein palmitoylation

15-Azidopentadecanoic acid (Life Technologies, Grand Island, NY)
dissolved in DMSO (50 mM) was added to each cell culture containing
20 × 106 CD4+ T cells to a final concentration of 50 μM, and incubated
for 24 h. Cells were then collected, washed, and lysed in homogeniza-
tion buffer composed of 50 mM Tris–HCl, pH = 8, 1% SDS (w/v),
100 μM of sodium orthovanadate, 1× sigma protease cocktail, and 250
units of benzonase nuclease. Protein lysates from two cultures were
pooled and concentrated using centrifugal concentrator (3 kDa cut-off,
Millipore, Billerica, MA). Protein concentrationwas subsequently deter-
mined using the bicinchoninic acid assay (Thermo Scientific, Rockford,
IL) and protein concentration was adjusted to 4 μg/μL for Click chemis-
try. Click chemistry was performed using the Click-iT kit (Life Technol-
ogies) according to the manufacturer's protocol. Briefly, 200 μg of
cellular protein was combined with 100 μL of Click-iT reaction buffer
containing PEG4 carboxamide-propargyl biotin (Life Technologies),
10 μL of ddH2O, vortexed for 5 s, before addition of CuSO4 and compo-
nent C. The reaction was vortexed for 5 s, and incubated for 3 min at
23 °C. Finally, component D was added to the reaction and incubated
for at 23 °C for 30 min, protected from light. After the reaction, protein
was precipitated according to the manufacturer's protocol, and resus-
pended in a homogenization buffer containing 50 mM Tris–HCl, pH =
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7.5, 15mMEGTA, pH=7.5, 100mMNaCl, 0.1% Triton X-100, 500 μMof
sodium orthovanadate, 1× Sigma protease cocktail, and 10 mM β-
mercaptoethanol. The protein concentration was determined by the
Coomassie Plus Protein assay (Pierce, Rockford, IL). Samples were
then loaded onto 4–20% Tris-glycine polyacrylamide precast gel
(Invitrogen) and separated for 2.5 h at 4 °C. Proteins were then trans-
ferred onto polyvinylidene fluoride membranes at 400 mA for
90 min. Membranes were blocked at room temperature for 1 h in
4% nonfat dry milk. Primary antibody against biotin (mouse anti-
biotin, Jackson ImmunoResearch, West Grove, PA) was incubated
overnight at 4 °C. Membranes were subsequently washed and incu-
bated with secondary horseradish peroxidase conjugated rabbit
anti-mouse IgG (KPL) and developed using Pierce SuperSignal West
Femto maximum sensitivity substrate. Membranes were then
scanned using Fluor-S Max MultiImager system (BioRad, Hercules,
CA) and analyzed using QuantityOne (BioRad).

For immunoprecipitation, 100 μg of protein was combinedwith rab-
bit polyclonal IgG anti-Lck (Millipore) for 90 min at 4 °C prior to addi-
tion of Protein G Dynabeads (Life Technologies) for overnight
incubation at 4 °C. The following day, the protein-antibody complex
was collected using DynaMagnet, and boiled in the presence of 2×
pyronin before immunoblotting as described above.

2.9. Statistical analysis

All experiments were conductedwith at least four animals, and data
were expressed as mean ± sem unless otherwise noted. Using
GraphPad Prism (La Jolla, CA), data were analyzed by two-tailed
Student's t-test between genotypes with a single treatment, one-way
ANOVA between multiple groups, or by two-way ANOVA between
genotypes and treatments. In cases where P b 0.05 in ANOVA, a Tukey
post-hoc test was conducted. P b 0.05 was considered to be statistically
significant.

3. Results

3.1. Optimization of FRET experiments

We have previously shown that n-3 PUFA perturb the membrane
lipid bilayer by increasing the liquid order of plasma membrane in
CD4+ T cells isolated from mice fed a diet enriched in n-3 PUFA, e.g.,
DHA [13]. To further probe the effects of n-3 PUFA on plasmamembrane
mesodomains, we performed a series of FRET experiments utilizing the
raftmarkers Lck(N10) and LAT(ΔCP), inwhich the 10N-terminal amino
acids of Lck and the transmembrane domain LAT are fused to fluores-
cent reporters. For comparative purposes, we also investigated the
properties of the non-raft marker Src(N15), which contains the 15 N-
terminal amino acids of c-Src. These peptides arewell-described probes
used to target lipid raft and non-raft regions of the plasma membrane,
and have been shown to localize predominantly to the plasma mem-
brane in Jurkat and primary T cells (Fig. S1A; [38–41]).

Mammals are unable to convert n-6 PUFA into n-3 PUFA, thus we
utilized primary CD4+ T cells isolated from Fat-1 transgenic mice, a
model in which the plasma membrane is enriched with n-3 PUFA
upon feeding a diet high in n-6 PUFA [21,22]. We utilized a lentivirus
system to transduce the reporter plasmids in order to avoid activating
the CD4+ T cells with antibodies or chemicals [38]. Using this system,
the presence of n-3 PUFA did not affect lentiviral transduction efficiency
(Fig. S1B).

We initially assessed FRET efficiency by performing a series of con-
trol experiments (Fig. S2). For this purpose, FRET standards, C5Vand
C32V were expressed in 293T cells (Fig. S2A; [42]). These constructs
were generated by positioning Cerulean (C) relative to Venus (V) with
either a 5- or 32-amino acid linker; thus C5V should have higher FRET
efficiency relative to C32V [42]. We then determined the FRET efficien-
cies of the Lck(N10)/Lck(N10) FRET pair in both 293T cells and primary
CD4+ T cells to evaluate the change associated with photobleaching the
whole cell versus a region of interest (ROI). FRET by acceptor
photobleaching has been used for both the C5V and C32V standards
[43], and for measuring membrane markers in Jurkat T cells [38,41].
No statistical differences between the two approaches were observed
(Fig. S2&C). Collectively, these data indicate that the diffusion of YPet
outside the ROI is slow enough to accurately measure FRET efficiency
immediately after photobleaching. Furthermore, the lack of any differ-
ence between whole cell versus plasma membrane targeted regions of
interest suggests that the probes are localized predominantly to the
plasma membrane (Fig. 1A) and not in endosomes. For example, non-
interacting probes localized to internal membranes would decrease
the overall FRET detected in whole cells when compared to a ROI at
the plasma membrane [44]. We subsequently optimized the iterations
of photobleaching in an ROI in order to ensure maximum
photobleaching without prolonged laser exposure, thereby minimizing
effects on cell viability (Fig. S2D).

3.2. Using raft and non-raft markers to probe the effects of n-3 PUFA on
CD4+ T cell plasma membrane mesodomains

Wehypothesized that the presence of n-3 PUFA in the plasmamem-
branewould increase the FRET efficiency between the lipid raftmarkers
since increased liquid order would favor coalescence of lipid raft
mesodomains. Therefore, we measured the FRET efficiency between
the various raft and non-raft markers (Fig. 1A-C). Consistent with our
observations that n-3 PUFA increase the liquid order of the plasma
membrane, the incorporation of n-3 PUFA into the plasma membrane
increased the FRET efficiencies of the lipid raft markers Lck(N10)/
Lck(N10), and Lck(N10)/LAT(ΔCP) (Fig. 1D&E), compared to the control
non-interacting markers Lck(N10)/Src(N15) (Fig. 1F). Since the diffu-
sion ofmembrane proteins can be influenced bywhether they are local-
ized in lipid raft mesodomains [45], we also determined the rate of
fluorescence recovery after photobleaching (FRAP) of the raft markers
Lck(N10) and LAT(ΔCP). FRAP of Lck(N10) in CD4+ T cells enriched
with n-3 PUFA exhibited a 20% decrease relative to the FRAP of
Lck(N10) expressed in wild type CD4+ T cells (Fig. 1G). We did not ob-
serve a difference in the FRAP of LAT(ΔCP) between genotypes, perhaps
due to the slow rate of recovery exhibited by LAT(ΔCP) (Fig. 1H). Collec-
tively, the results from the FRET and FRAP experiments indicate that n-3
PUFA alter the dynamics of the lipid raft mesodomains in the plasma
membrane.

3.3. Incorporation of n-3 PUFA into the CD4+ T cell plasma membrane de-
creases the non-raft pool of PI(4,5)P2

Since we have shown that the lipid raft mesodomains in the plasma
membrane are perturbed by the presence of n-3 PUFA, and PI(4,5)P2
couples the mesoscale raft domains with membrane cytoskeleton
compartments [2–4], we hypothesized that incorporation of n-3 PUFA
into the plasma membrane would alter the spatial organization of
PI(4,5)P2 relative to raft and non-raft mesodomains. Utilizing the raft
markers [Lck(N10) and LAT(ΔCP)] and the non-raft marker [Src(N15)]
in combination with the PI(4,5)P2 reporter PH(PLC-δ), which has been
validated previously to target PI(4,5)P2 [35,46], we tested our hypothe-
sis in a series of FRET experiments (Figs. 2&3). Although n-3 PUFA in-
creased the FRET efficiencies between lipid raft markers (Fig. 1D&E),
the FRET efficiency between PH(PLC-δ) and either Lck(N10) or
LAT(ΔCP) was not affected in CD4+ T cells enriched with n-3 PUFA
(Fig. 2D&E). This was corroborated by measuring the co-localization
between GM1, a well-characterized lipid raft marker [47], and
PH(PLC-δ), which showed no difference in the presence of n-3 PUFA
(Fig. 2H). The FRET efficiency between PH(PLC-δ) and the non-raft
marker Src(N15), however, was decreased by 20% in CD4+ T cells
enriched with n-3 PUFA (Fig. 3A&C). To verify the specificity of our
PH(PLC-δ) probe, we performed FRET experiments using the



Fig. 1. n-3 PUFA perturb the biophysical properties of the plasma membrane detected by increased interaction of fluorescent lipid raft markers. (A, B, and C) Schematic diagrams of the
interaction between neighboring fluorescent probes targeted to the raft or the non-raft membrane fraction of the plasma membrane. Lck(N10) and Src(N15) consist of the first 10 and
15N-terminal aminoacids of Lck and Src, respectively. LAT(ΔCP) consists of thefirst 36 amino acids, representing the extracellular, transmembrane, and themembrane anchoringportions
of LAT. Splenic CD4+ T cellswere incubatedwith lentivirus containing (D) Lck(N10)/Lck(N10), (E) Lck(N10)/LAT(ΔCP), or (F) Lck(N10)/Src(N15) before FRET by acceptor photobleaching
(n=4mice per genotype). FRET efficiency (E%)was determined by comparing the CFP intensity before and after acceptor photobleaching, and corrected as described in theMaterials and
methods (*P b 0.05 between genotypes, two-tailed Student's t-test). The rate of recovery after photobleaching was also determined for CD4+ T cells expressing (G) Lck(N10)-YPet and
(H) LAT(ΔCP)-YPet (*P b 0.05 between genotypes, two-tailed Student's t-test).
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PHR40L(PLC-δ) mutant to abolish binding of the PH domain to PI(4,5)P2
[35,46] in conjunction with the raft marker Lck(N10) or the non-raft
marker Src(N15). As expected, binding of the R40L mutated PH domain
to PI(4,5)P2 exhibitedmarkedly decreased FRET efficiencies in bothwild
type and Fat-1 CD4+ T cells (Figs. 2F&3D). These results suggest that the
incorporation of n-3 PUFA into the plasma membrane not only influ-
ences the biophysical properties of the phospholipid bilayer, but also al-
ters the spatial organization of PI(4,5)P2 by depleting the non-raft pool
of PI(4,5)P2.

We have previously demonstrated that the incorporation of n-3
PUFA into the plasma membrane of CD4+ T cells decreased the
level of PI(4,5)P2 by 50%, resulting in suppressed actin remodeling
upon anti-CD3/anti-CD28 stimulation [23]. The suppression of
PI(4,5)P2-dependent actin remodeling was reversed by incubation
with exogenous PI(4,5)P2. However, recent studies have suggested
that different pools of PI(4,5)P2 are responsible for differential acti-
vation of different signaling pathways, such as calcium signaling
and actin remodeling [48–50]. Therefore, we hypothesized that co-
incubation with exogenous PI(4,5)P2 and CD4+ T cells enriched in
n-3 PUFA would rescue the non-raft pool of PI(4,5)P2. FRET efficien-
cies using the lipid raft marker Lck(N10) and PI(4,5)P2 marker
PH(PLC-δ) before and after incubation with exogenous PI(4,5)P2

did not differ between wild type and CD4+ T cells enriched with n-
3 PUFA (Fig. 2G). In contrast, using the non-raft marker Src(N15)
and PH(PLC-δ), the FRET efficiency of CD4+ T cells enriched with n-
3 PUFA increased to the level of wild type CD4+ T cells (Fig. 3E).
These data indicate that exogenous PI(4,5)P2 increases the non-raft
pool of PI(4,5)P2 in CD4+ T cells enriched with n-3 PUFA to a level
comparable to wild type cells.

3.4. Exogenous PI(4,5)P2 reverses the suppression of proliferation in CD4+ T
cells enriched with n-3 PUFA

We have previously shown that CD4+ T cells enriched with n-3
PUFA exhibit suppressed proliferation following anti-CD3/anti-CD28
stimulation [14,19]. Since exogenous PI(4,5)P2 restores the non-raft
pool of PI(4,5)P2 (Fig. 3E), and can rescue PI(4,5)P2-dependent actin re-
modeling [23], we hypothesized that exogenous PI(4,5)P2 would also
reverse the suppressed proliferative phenotype in CD4+ T cells enriched
with n-3 PUFA.Using CFSE as amarker of T cell proliferation, and PIfluo-
rescence as amarker of cell viability, cell divisionwas determined based
on the number of distinct CFSE fluorescence intensity peaks (Fig. 4). The
proliferation index of each populationwas determined using the gener-
ational data, providing an indicator of the proliferative capacity of the
population [37]. CD4+ T cells enriched with n-3 PUFA exhibited a sup-
pressed (~20% lower) T cell proliferative capacity compared to wild
type (Fig. 4C). Importantly, the suppressed proliferation recovered to
wild type levels upon pre-treatment with exogenous PI(4,5)P2. These
findings demonstrate that i) incorporation of n-3 PUFA into the plasma
membrane of CD4+ T cells not only alters the spatial organization of

Image of Fig. 1


Fig. 2. n-3 PUFA do not affect the interaction of fluorescent raft and PI(4,5)P2 markers detected using FRET in Fat-1 CD4+ T cells. (A and B) Schematic diagrams of the interaction between
neighboringfluorescent probes targeted to the raftmembrane fraction of theplasmamembrane, andPH(PLC-δ), a PI(4,5)P2 reporter. (C) A control PHR40L(PLC-δ)was also expressed to test
the specificity of the PH(PLC-δ) reporter. CD4+ T cells were incubated with lentivirus containing (D) Lck(N10)/PH(PLC-δ) (n = 8 per genotype), (E) LAT(ΔCP)/PH(PLC-δ) (n= 6 per ge-
notype), or (F) Lck(N10)/PHR40L(PLC-δ) (n= 4 per genotype) before FRET by acceptor photobleaching. FRET efficiency (E%) was determined as described in Fig. 1 (*P b 0.05 between ge-
notypes, two-tailed Student's t-test). (G) CD4+ T cells were isolated and transduced with Lck(N10)-ECFP and PH(PLC-δ)-YPet for 48 h prior to incubation with 1.25 μM PI(4,5)P2 or PBS
(0 μM) for 1 h. Cells were analyzed as described in Fig. 1. (H) Colocalization between the lipid raftmarker GM1 and PI(4,5)P2 is not altered in the presence of n-3 PUFA. Splenic CD4+ T cells
were positively selected and incubatedwith lentivirus containing pLenti-PH(PLC-δ)-GFP for 48 h (n= 4mice per genotype). Cells were collected, washed, labeledwith Alexa 647 Cholera
Toxin B (final concentration 10 μg/mL) and crosslinkedwith anti-Cholera Toxin B [Vybrant Lipid Raft Labeling Kit (Life Technologies)] according to themanufacturer's protocol. Cells were
imaged using a Zeiss 510 LSM confocal microscope. The plasma membrane region of the cell was drawn and Pearson's coefficient was determined using NIS-Elements (Nikon).

90 T.Y. Hou et al. / Biochimica et Biophysica Acta 1858 (2016) 85–96
PI(4,5)P2 by decreasing the non-raft pool of PI(4,5)P2, but also
suppresses T cell proliferation; and ii) replenishment of the non-raft
pool of PI(4,5)P2 (Fig. 3E) and rescue of PI(4,5)P2-dependent actin
remodeling in CD4+ T cells enriched with n-3 PUFA [23], restore full
lymphoproliferative capacity.

3.5. CD4+ T cells isolated from mice fed a 4% DHA triglyceride-enriched diet
exhibit decreased raft PI(4,5)P2, non-raft PI(4,5)P2, and lymphoproliferation
which can be rescued by exogenous PI(4,5)P2

Since the predominant species of PI(4,5)P2 is 1-stearoyl-2-
arachidonoyl phosphatidylinositol [51], and we have previously
demonstrated that CD4+ T cells isolated frommice fed a 4%DHA triglyc-
eride diet had approximately 25% lower levels of PI(4,5)P2 [23], we
characterized the fatty acid profiles of CD4+ T cell phospholipid from
C56BL/6 mice fed either a 5% corn oil (CO)-enriched diet (control), a
0.95% DHA-triglyceride-enriched diet, or a 4% DHA-triglyceride-
enriched diet and isolated splenic CD4+ T cells (Fig. 5). In particular,
total phospholipids isolated from the 4%DHAgroup exhibited a dramat-
ic 95% decrease in the amount of arachidonic acid (20:4, n-6), and a
concomitant increase in DHA (22:6, n-3) compared to the control CO
and 0.95% DHA groups.

In order to determine whether dietary n-3 PUFA, can recapitulate
the Fat-1 CD4+ T cell phenotype, mice were fed the aforementioned

Image of Fig. 2


Fig. 3. n-3 PUFA decrease the interaction offluorescent non-raft and PI(4,5)P2markers detected using FRET in Fat-1 CD4+ T cells. (A and B) Schematic diagrams of the interaction between
neighboring fluorescent probes targeted to the non-raft membrane fraction of the plasmamembrane, and PH(PLC-δ), a PI(4,5)P2 reporter, or the control PHR40L(PLC-δ). CD4+ T cells were
incubated with lentivirus containing (C) Src(N15)/PH(PLC-δ) (n = 7 per genotype), or (D) Src(N15)/PHR40L(PLC-δ) (n= 4 per genotype) before FRET by acceptor photobleaching. FRET
efficiency (E%)was determined as described in Fig. 1 (*P b 0.05 between genotypes). (E) CD4+ T cells were isolated and transducedwith Src(N15)-ECFP and PH(PLC-δ)-YPet for 48 h prior
to incubation with 1.25 μMPI(4,5)P2 or PBS (0 μM) for one hr. Cells were analyzed as described in Fig. 1. A two-tailed t-test was used to compare FRET efficiencies within specific concen-
trations (*P b 0.05 at specific concentrations of PI(4,5)P2).
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control CO-enriched diet, 0.95% DHA-triglyceride, or 4% DHA-
triglyceride enriched diet. Using the raft and non-raft probes of
Lck(N10) and Src(N15), respectively, in conjunction with the PI(4,5)P2
probe PH(PLC-δ), we detected decreased FRET efficiencies between
CD4+ T cells isolated from mice fed the control diet and the 4% DHA-
triglyceride-enriched diet using the combination of Lck(N10)/PH(PLC-δ)
and Src(N15)/PH(PLC-δ), suggesting that both the lipid raft and
non-raft pools of PI(4,5)P2 are perturbed (Fig. 6A-D). The decrease in ar-
achidonic acid in the phospholipid fraction (Fig. 5) was correlated with
the decrease in PI(4,5)P2 in both the raft and non-raft fractions
(Fig. 6C&D). In addition, decreased PI(4,5)P2 was also associated with
suppressed lymphoproliferation (Fig. 6E), similar to Fat-1 CD4+ T cells.
Importantly, incubation of CD4+ T cells with exogenous PI(4,5)P2
reversed the DHA-mediated suppression of lymphoproliferation
caused by decreased PI(4,5)P2, demonstrating that decreased sta-
tus of PI(4,5)P2 directly suppresses lymphoproliferation (Fig. 6E).
Collectively, these results demonstrate that enrichment of the CD4+ T
cell plasmamembranewith n-3 PUFAdecreases the level of phospholipid
arachidonic acid, perturbs both raft and non-raft pool of PI(4,5)P2 and
suppresses lymphoproliferation that can be rescued by exogenous
PI(4,5)P2.

3.6. Palmitoylation is not affected by n-3 PUFA in unstimulated primary
CD4+ T cells

An alternative explanation for the observed results using Lck(N10)
and LAT(ΔCP) probes in our FRET experiments could be that the pres-
ence of n-3 PUFA alter the palmitoylation of these probes. Indeed, it
has been shown that EPA can decrease the palmitoylation of the Src
family kinase Fyn in COS-1 cells [52]. To investigate the effect of n-3
PUFA on protein palmitoylation, CD4+ T cells were isolated from wild
type and Fat-1 mice and subsequently incubated the azido-palmitic
acid, followed by Click chemistry, before analysis by immunoblotting.
Contrary to previous results suggesting that n-3 PUFA decrease the
palmitoylation of signaling proteins [52], global palmitoylation status
was not affected in Fat-1 CD4+ T cells (Fig. 7A). To examine whether

Image of Fig. 3


Fig. 4. Exogenous PI(4,5)P2 rescues then-3 PUFA-induced suppression of T cell proliferation. Representative scatterplots andCFSE profiles of (A) unstimulated, and (B) anti-CD3/anti-CD28
stimulated CD4+ T cell cultures. Splenic CD4+T cellswere stainedwith CFSE, then cultured (n=4mice per genotype) either in unstimulated or stimulated conditions for 72 h in triplicate.
Cells were collected and gated by propidium iodide staining to exclude dead cells. (C) Cell proliferation was analyzed using the ProliferationWizard inModFitLT3.2 to determine the pro-
liferation index. Different letters represent statistically significant differences between the groups after one-way ANOVA followed by Tukey post-hoc test (P b 0.05).
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palmitoylationwas affected in specific proteins, we performed an immu-
noprecipitation of LCK in order to isolate and detect its palmitoylation
status. Consistent with the global palmitoylation signature, n-3 PUFA
did not affect the palmitoylation status of LCK in CD4+ T cells (Fig. 7B).
These results suggest that the effects of n-3 PUFA on plasma membrane
organization are independent of protein palmitoylation.
4. Discussion

Given their widespread consumption and clinical use, it is important
to elucidate the mechanisms by which n-3 PUFA exert their anti-
inflammatory properties. Previous studies have examined the extrinsic
effects of n-3 PUFA downstreamof TCR engagementwithMHCII antigen
presentation [14,19,23,24]. However, a number of outstanding issues
Fig. 5. Dietary DHA reduces membrane arachidonic acid levels. Levels of DHA (22:6, n-3)
and arachidonic acid (20:4, n-6) in CD4+ T cell phospholipids isolated from mice fed 5%
corn oil (CO), 0.95% DHA, or 4% DHA-enriched diet are shown. Fatty acids from CD4+ T
cell total phospholipids were extracted, isolated, and characterized as previously de-
scribed [19,21]. Data represent mean ± sem (n = 4 per diet), and different letters repre-
sent statistically significant differences between the diet groups per fatty acid (P b 0.05).
Note that other n-3 PUFA such as EPA (20:5, n-3) and DPA (22:5, n-3) were not detected
in CD4+ T cell total phospholipids.
concerning effects on membrane hierarchical organization and linkage
to cell function remain to be addressed. In the present study, using
both genetic and dietary approaches, we have demonstrated for the
first time thatmembrane incorporation of n-3 PUFA perturbs the spatial
organization of a critical second messenger, PI(4,5)P2 in CD4+ T cells,
resulting in suppressed lymphoproliferation. Importantly, exogenous
incubation of PI(4,5)P2 with CD4+ T cells enriched in n-3 PUFA rescued
both the spatial perturbation of PI(4,5)P2 and suppressive effects on
lymphoproliferation. These novel findings provide insight into the mo-
lecular mechanisms by which n-3 PUFA alter host inflammation, and
contribute to the rational application of dietary lipids in the comple-
mentary and alternative medicine armamentarium.

Previous works have investigated the effects of n-3 PUFA on the lo-
calization and acylation of LCK and LAT in Jurkat T cells [52–55]. These
earlier studies using the immortalized Jurkat T cells and ex vivo incuba-
tion of n-3 PUFA provided the impetus to study the effects of n-3 PUFA
in primary mouse CD4+ T cells, where the plasma membrane is
enriched with n-3 PUFA by either a genetic (Fat-1) or dietary (4%
DHA-triglyceride) model [52–55]. Gu et al. has previously shown that
incubation of mouse Pten-null prostate cells with DHA resulted in in-
creased DHA at the sn-2 position of PI(4,5)P2, changing the localization
of PI(3,4,5)P3 and downstream AKT signaling [56]. We have previously
investigated the fatty acid species of PI(4,5)P2 usingmass spectrometry,
and we did not detect enrichment of DHA at the sn-2 position of
PI(4,5)P2 in primary mouse CD4+ T cells [23]. Thus, our data suggest
that the non-raft pool of PI(4,5)P2 is decreased in CD4+ T cells enriched
with n-3 PUFA, and this is not due to a shift in localization.

Since lipid raft mesodomains in the plasmamembrane play a critical
role in initiating T cell activation [15,25], and n-3 PUFA are incorporated
into the plasma membrane, we hypothesized that n-3 PUFA suppress T
cell activation by altering i) the biophysical properties of lipid raft
mesodomains; and ii) the spatial organization of PI(4,5)P2 relative to
lipid raft and non-raft mesodomains. By using lipid raft and non-raft
markers in a series of FRET experiments, we demonstrate for the first
time in primary CD4+ T cells that n-3 PUFA alter the topology of lipid
raft mesodomains. The increase in FRET efficiency between the lipid
raft markers observed in CD4+ T cells enriched in n-3 PUFA
(Fig. 1D&E) can be interpreted either as an increase in the size or the sta-
bility of the lipid raft mesodomains. In both cases, the enhancement of
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Fig. 6. Dietary DHA decreases the interaction of fluorescent raft and non-raft probes with PI(4,5)P2 marker detected using FRET, resulting in suppressed lymphoproliferation that can be
rescued by exogenous PI(4,5)P2 in CD4+ T cells. (A and B) Schematic diagrams of the interaction between neighboring fluorescent probes targeted to the raft or the non-raft membrane
fraction of the plasmamembrane, and PH(PLC-δ), a PI(4,5)P2 reporter. CD4+ T cells were incubated with lentivirus containing (C) Lck(N10)/PH(PLC-δ) (n= 4 per diet), or (D) Src(N15)/
PH(PLC-δ) (n = 4 per diet) before FRET by acceptor photobleaching. FRET efficiency (E%) was determined as described in Fig. 1 (*P b 0.05 between genotypes). (E) Splenic CD4+ T cells
were stainedwith CFSE, then cultured (n=6mice per diet) either in unstimulated or stimulated conditions for 72 h in triplicate. Cellswere collected and gated by propidium iodide stain-
ing to exclude dead cells. Proliferation Index was calculated using ModFitLT 3.2 [37]. Different letters represent statistically significant differences between the groups after one-way
ANOVA followed by Tukey post-hoc test (P b 0.05).
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lipid raft mesodomains would be expected to decrease the average
diffusion of the lipid raft marker, since it has been shown that an as-
sociation with lipid raft mesodomains retards the diffusion rate of
these markers [57,58]. This is consistent with the FRAP data reported
in Fig. 1G. From an immunological perspective, this perturbation in
plasma membrane biophysics is associated with a suppression of T
cell proliferation observed in Fig. 4C [14,21]. Interestingly, other
forms of perturbation to plasma membrane topology can change
the threshold for T cell activation. For example, incubation of Jurkat
T cells with 7-ketocholesterol decreased the membrane order and
resulted in a suppression of downstream T cell signaling [25].

Since the organization of lipid raft mesodomains is closely linked
with the actin cytoskeleton, and the actin cytoskeleton is regulated
by PI(4,5)P2 [59], we hypothesized that the incorporation of n-3
PUFA into the plasmamembrane of CD4+ T cells would alter the spa-
tial organization of PI(4,5)P2. Indeed, we have previously shown that
n-3 PUFA reduced the amount of total PI(4,5)P2 by 50% in CD4+ T
cells and this reduction was correlated with a suppression of
PI(4,5)P2-dependent actin remodeling necessary for proper T cell ac-
tivation [23]. Surprisingly, the increase in FRET efficiency between
lipid raft markers in the presence of n-3 PUFA did not correlate
with a change in the lipid raft pool of PI(4,5)P2 (Figs. 1&2); rather,
the non-raft pool of PI(4,5)P2 was decreased (Fig. 3C). In the context
of PI(4,5)P2-dependent actin remodeling, this was not entirely unex-
pected, as this remodeling has been shown in other cell types to be
regulated by a specific PIP5K isoform (PIP5Kγ) which is capable of
synthesizing the non-raft pool of PI(4,5)P2 [48–50]. Furthermore,
perturbations in the raft and non-raft pools of PI(4,5)P2 using a
targeted phosphatase in Jurkat T cells produced different actin-
dependent phenotypes [60]. These studies demonstrate the com-
partmentalization of PI(4,5)P2 in the plasma membrane (raft and
non-raft), and the importance of non-raft PI(4,5)P2 in regulating
actin remodeling. It is also noteworthy that incubation with exoge-
nous PI(4,5)P2 increased PI(4,5)P2 mass back to wild type levels

Image of Fig. 6


Fig. 7.Palmitoylation status ofmembrane proteins is not altered in Fat-1CD4+T cells. (A) 1.5× 107 splenic CD4+T cellswerepositively selected and seeded into a 35mmculture dishwith
4 mL of RPMI media supplemented with 2% FBS and rIL-2 overnight. Cells were treated with 50 μM of azido-palmitic acid for 24 h and 2 wells were pooled per sample (n = 2 mice per
sample, n = 4 samples per genotype). Subsequently, 100 μg of protein lysate was used for Click chemistry and palmitoylation was detected by immunoblotting. Numbers on the left side
represent molecular weight markers. (B) Palmitoylation of LCK is not affected in Fat-1 CD4+ T cells. Cells were selected and processed as in (A), and samples were subsequently
immunoprecipitated (IP) using polyclonal rabbit IgG anti-LCK. Palmitoylated LCK was then detected by immunoblotting (IB) using an anti-biotin antibody and subsequently quantified.
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(Fig. 3E), which is consistent with the rescue of PI(4,5)P2-dependent
actin remodeling upon stimulation [23].

In our diet model, the 4% DHA-triglyceride contributed approxi-
mately 5% total energy (kcals) to the diet. We demonstrated that phos-
pholipid levels of arachidonic acid were reduced by 95% (Fig. 5), which
was associated with a decrease in both the raft and non-raft fractions of
PI(4,5)P2 (Fig. 6C&D) and a reduction in lymphoproliferation (Fig. 6E).
This observation is consistent with previous reports indicating that
membrane phosphoinositide arachidonic acid levels are antagonized
by n-3 PUFA across multiple cell types and tissues [19,61]. Interestingly,
the suppression of lymphoproliferation was reversed by incubation
with exogenous PI(4,5)P2, demonstrating that PI(4,5)P2 is a direct target
of DHA at the plasmamembrane capable of modulating T cell prolifera-
tion. With respect to dose, in a typical Greenland Inuit diet, n-3 PUFA
constitutes approximately 2.7–6.3% of daily energy [62–64]. Thus, a 4%
DHA diet is physiologically relevant based on daily energy intake. It is
interesting to note that the phospholipid level of arachidonic acid in
Fat-1 CD4+ T cells was only reduced by 25% [21], and this reduction
was correlated with a decrease in only the non-raft fraction of
PI(4,5)P2, suggesting a dose-dependent differential regulation of the
raft and non-raft pool of PI(4,5)P2. Further studies are required to ad-
dress the dose-related effects of diet on different phospholipid pools.

Exogenous incubation of PI(4,5)P2, which enriches the plasmamem-
brane pool of PI(4,5)P2 (Figs. 2G&3E), has been employed to rescue
PI(4,5)P2-dependent processes, such as insulin response in adipocytes
[65,66] and actin remodeling upon CD4+ T cell activation [23]. Since
we have previously demonstrated that incorporation of n-3 PUFA into
the T cell plasma membrane suppresses lymphoproliferation upon
stimulation [14,21], we hypothesized that the rescue of the non-raft
pool of PI(4,5)P2 would also reverse the suppression of T cell prolifera-
tion, linking the biochemistry and cellular biology of the T cell mem-
brane with a highly relevant immunological end point. Using the CFSE
assay to measure T cell proliferation, we demonstrate that rescue of
the non-raft pool of PI(4,5)P2 in CD4+ T cells enriched with n-3 PUFA
also restores T cell proliferation back to wild type levels.

Previous experiments examining the perturbations of membranes
by phytochemicals suggest that small changes to the cell membrane
caused by amphiphilic phytochemicals can manifest itself in large
changes to protein function [67–69]. As an example, the phytochemicals
capsaicin, curcumin, epigallocatechin gallate (EGCG), genistein, and res-
veratrol only increased the average area per lipid, or decreased bilayer
thickness, by at most 3%. Yet, these compounds were able to promiscu-
ously modify channel proteins from five different classes [67]. These
data clearly demonstrate thatmodest changes to the plasmamembrane
can have significant biological effects. Similarly, DHA has been found to
decrease the elastic coefficient of theplasmamembraneby only 10%, yet
this modest decrease is sufficient to alter protein structure, as detected
by gramicidin channel function [68,69]. Consistent with the observation
that small perturbations to the plasma membrane can have significant
biological effects, we observed modest changes in FRET signals (3–5%)
at the plasmamembrane enrichedwith n-3 PUFA, whichwas associated
with the suppression of T cell lymphoproliferation.

Since n-3 PUFA in general are considered anti-inflammatory in part
by suppressing CD4+ T cell activation and differentiation into the pro-
inflammatory Th1 and Th17 CD4+ T cell effector subsets, one could sur-
mise that n-3 PUFA might negatively influence host immune response
against infectious diseases. Indeed, we have demonstrated using a guin-
ea pigmodel of mycobacterial infection that animals fed a diet enriched
with n-3 PUFA were more susceptible to a low-dose pulmonary chal-
lenge of virulentM. tuberculosis [70]. This phenotype was also recapitu-
lated in the Fat-1mousemodel [33]. Furthermore, exposing SMAD3−/−

mice fed a high dose of fish oil (2.25%–6%) to Helicobacter hepaticus
worsened colonic inflammation, and led to increased post-infection
mortality [71]. These observations highlight the context-dependent,
anti-inflammatory effects of n-3 PUFA.

In conclusion, this study highlights how n-3 PUFA, found in dietary
fish oil, directly affect the lipid-lipid interactions fundamental to the for-
mation of lipid raft mesodomains in the plasma membrane, thereby
perturbing downstream signals required for T cell proliferation. The
evolution of the lipid raft model to include nanoclustering of proteins
that are highly regulated by both lipids and cortical actin cytoskeleton
demonstrates the intricacies of organizing signaling components at
the cell surface. Our novel findings, that n-3 PUFA perturb the spatial or-
ganization of PI(4,5)P2 at the cell surface, leading to suppressed actin re-
modeling and lymphoproliferation, further support the concept that n-3
PUFA can be used rationally for the treatment of chronic inflammatory
diseases in which T cells are inappropriately activated.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbamem.2015.10.009.
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