22 research outputs found

    Les coacervats de protĂ©ines sĂ©riques: des nouveaux agents d’encapsulation naturels et fonctionnels

    No full text
    Les protĂ©ines du lait constituent une vĂ©ritable malle au trĂ©sor. Les avancĂ©es scientifiques actuelles sur le lait mettent de plus en plus en exergue la plasticitĂ© des protĂ©ines laitiĂšres, souvent dĂ©crites comme l’or blanc du lait. La capacitĂ© de ces protĂ©ines Ă  former des assemblages aptes Ă  fonctionnaliser des interfaces, eau-huile et eau-air, pour obtenir des Ă©mulsions et des mousses ; Ă  texturer les produits ou encore Ă  vectoriser des molĂ©cules d’intĂ©rĂȘt offre un Ă©norme potentiel d’innovation. Ce potentiel s’inscrit dans la tendance du Clean Label et la crĂ©ation de nouveaux produits laitiers 100% lait. Le projet PROFIL (PROtĂ©ines FonctionnalisĂ©es pour l’Industrie LaitiĂšre) a Ă©tĂ© bĂąti sur ces extraordinaires dĂ©couvertes. Il rĂ©unit sept partenaires acadĂ©miques et un consortium de 10 industriels laitiers regroupĂ©s au sein du consortium BBA. L’objectif de la journĂ©e du 21 septembre est de partager avec les chercheurs, acadĂ©miques et industriels les rĂ©sultats marquants de PROFIL qui seront prĂ©sentĂ©s par six doctorants

    Les coacervats de beta-lactoglobuline et lactoferrine pour l'encapsulation d'une molécule bioactive modÚle, la vitamine B9

    No full text
    Encapsulation of bioactives is relevant for the development of functional foods. Food proteins as encapsulating agents could match the objective of industries to develop “clean label” products. Moreover, whey proteins (WP) exhibit good potentialities as encapsulating agents. Previous works have demonstrated that the WPs, beta-lactoglobulin (BLG) and lactoferrin (LF), are able to spontaneously co-assemble by complex coacervation. This study explores the ability of BLG-LF coacervates as a potential carrier for the encapsulation of a model bioactive, vitamin B9. Throughout screening experiments, we determined the domains where B9-WP coacervation occured according to a tested range of pH, proteins and vitamin concentrations and molar ratios. Optimal conditions for coacervation were found in water, at pH 5.5, with LF:B9:BLG molar ratio of 1:5:10, affording coacervation yields of 45 to 55% and B9 encapsulation up to 98%.Coacervation was scaled-up from laboratory to bench scale using commercial-grade protein sources and static mixing. Final efficiencies were obtained with coacervates containing 4 mg of B9/g coacervates. Under degradative conditions (UV light irradiation, oxidation, freeze-drying), WP coacervates provided good protective properties limiting chemical degradation of native B9. In vivo oral administration of B9-WP coacervates in rats enhanced the plasmatic concentrations of B9 compared to unencapsulated B9. In addition, good physical stability over time was found after incorporated and resuspension of formed coacervates in milk. The combined results of this thesis pLes aliments fonctionnels connaissent aujourd’hui un intĂ©rĂȘt grandissant. Pour leur formulation, l'encapsulation de bioactifs reprĂ©sente une voie intĂ©ressante et les protĂ©ines de lactosĂ©rum (PS) prĂ©sentent de bonnes potentialitĂ©s en tant qu'agents d’encapsulation. Des travaux antĂ©rieurs ont dĂ©montrĂ© que deux PS, la beta-lactoglobuline (BLG) et la lactoferrine (LF), peuvent former spontanĂ©ment des co-assemblages par coacervation complexe, une technologie d'encapsulation connue. Cette thĂšse Ă©tudie la coacervation BLG-LF pour l'encapsulation d'un bioactif modĂšle, la vitamine B9. En testant une gamme de pH et de ratios molaires, les conditions optimales de coacervation B9-PS sont obtenues dans l'eau, Ă  pH 5,5, avec un ratio molaire LF:B9:BLG de 1:5:10, permettant d’atteindre des rendements de coacervation de 45 Ă  55%, et d’encapsulation de B9 de 98 %.L’échelle de production des coacervats est augmentĂ©e avec succĂšs du ”L au L, avec des solutions protĂ©iques de qualitĂ© commerciale et un mĂ©langeur statique. Les rendements de coacervation et d’encapsulation sont conservĂ©s, avec l’encapsulation d’environ 4 mg de B9/g coacervats. Par ailleurs, les coacervats montrent un effet protecteur de la forme native de B9 vis-Ă -vis des UV, de l’oxydation et pendant la lyophilisation. Une Ă©tude in vivo chez le rat dĂ©montre une augmentation de la biodisponibilitĂ© de B9 lorsque administrĂ©e sous forme de coacervats. Les coacervats apparaissent stables lorsqu’ils sont resuspendus en gouttelettes dans du lait. Ce travail permet d’approfondir les connaissances sur la coacervation hĂ©tĂ©roprotĂ©ique et

    Beta-lactoglobulin and lactoferrin complex coacervates for the encapsulation of a model bioactive, the vitamin B9

    No full text
    Les aliments fonctionnels connaissent aujourd’hui un intĂ©rĂȘt grandissant. Pour leur formulation, l'encapsulation de bioactifs reprĂ©sente une voie intĂ©ressante et les protĂ©ines de lactosĂ©rum (PS) prĂ©sentent de bonnes potentialitĂ©s en tant qu'agents d’encapsulation. Des travaux antĂ©rieurs ont dĂ©montrĂ© que deux PS, la beta-lactoglobuline (BLG) et la lactoferrine (LF), peuvent former spontanĂ©ment des co-assemblages par coacervation complexe, une technologie d'encapsulation connue. Cette thĂšse Ă©tudie la coacervation BLG-LF pour l'encapsulation d'un bioactif modĂšle, la vitamine B9. En testant une gamme de pH et de ratios molaires, les conditions optimales de coacervation B9-PS sont obtenues dans l'eau, Ă  pH 5,5, avec un ratio molaire LF:B9:BLG de 1:5:10, permettant d’atteindre des rendements de coacervation de 45 Ă  55%, et d’encapsulation de B9 de 98 %.L’échelle de production des coacervats est augmentĂ©e avec succĂšs du ”L au L, avec des solutions protĂ©iques de qualitĂ© commerciale et un mĂ©langeur statique. Les rendements de coacervation et d’encapsulation sont conservĂ©s, avec l’encapsulation d’environ 4 mg de B9/g coacervats. Par ailleurs, les coacervats montrent un effet protecteur de la forme native de B9 vis-Ă -vis des UV, de l’oxydation et pendant la lyophilisation. Une Ă©tude in vivo chez le rat dĂ©montre une augmentation de la biodisponibilitĂ© de B9 lorsque administrĂ©e sous forme de coacervats. Les coacervats apparaissent stables lorsqu’ils sont resuspendus en gouttelettes dans du lait. Ce travail permet d’approfondir les connaissances sur la coacervation hĂ©tĂ©roprotĂ©ique et sEncapsulation of bioactives is relevant for the development of functional foods. Food proteins as encapsulating agents could match the objective of industries to develop “clean label” products. Moreover, whey proteins (WP) exhibit good potentialities as encapsulating agents. Previous works have demonstrated that the WPs, beta-lactoglobulin (BLG) and lactoferrin (LF), are able to spontaneously co-assemble by complex coacervation. This study explores the ability of BLG-LF coacervates as a potential carrier for the encapsulation of a model bioactive, vitamin B9. Throughout screening experiments, we determined the domains where B9-WP coacervation occured according to a tested range of pH, proteins and vitamin concentrations and molar ratios. Optimal conditions for coacervation were found in water, at pH 5.5, with LF:B9:BLG molar ratio of 1:5:10, affording coacervation yields of 45 to 55% and B9 encapsulation up to 98%.Coacervation was scaled-up from laboratory to bench scale using commercial-grade protein sources and static mixing. Final efficiencies were obtained with coacervates containing 4 mg of B9/g coacervates. Under degradative conditions (UV light irradiation, oxidation, freeze-drying), WP coacervates provided good protective properties limiting chemical degradation of native B9. In vivo oral administration of B9-WP coacervates in rats enhanced the plasmatic concentrations of B9 compared to unencapsulated B9. In addition, good physical stability over time was found after incorporated and resuspension of formed coacervates in milk. The combined results of this thesis

    Étude par FRAP de la diffusion de macro-solutĂ©s au sein de matrices fromagĂšres rĂ©elles

    No full text
    La diffusion des macrosolutĂ©s a un rĂŽle prĂ©pondĂ©rant en technologie fromagĂšre et est cruciale pour la qualitĂ© finale des fromages, bien que peu d’études aient Ă©tĂ© rĂ©alisĂ©es Ă  ce sujet [1]. Nous avons rĂ©cemment adaptĂ© avec succĂšs la technique FRAP (Recouvrement de la Fluorescence AprĂšs Photoblanchiment) en microscopie confocale, pour Ă©tudier les propriĂ©tĂ©s de diffusion de solutĂ©s fluorescents ayant des propriĂ©tĂ©s physico-chimiques diffĂ©rentes, au sein de matrices protĂ©iques [2]. Nous avons ainsi pu dĂ©terminer les coefficients de diffusion de ces solutĂ©s dans des matrices modĂšles et dans leur phase solvante [2]. L’objectif ici est de transposer cette technique Ă  des fromages rĂ©els afin d'explorer les relations entre les phĂ©nomĂšnes de diffusion et la diversitĂ© des structures des matrices fromagĂšres. Nous avons ainsi mesurĂ© par FRAP les coefficients de diffusion de solutĂ©s modĂšles (FITC-dextrans) choisis dans une large gamme de tailles (10 Ă  500 kDa), dans des fromages de structures diffĂ©rentes de types pĂąte molle Ă  dures.La technique de FRAP a Ă©tĂ© transposĂ©e avec succĂšs Ă  des matrices fromagĂšres rĂ©elles, permettant d’obtenir des coefficients de diffusion D du mĂȘme ordre de grandeur que dans les matrices modĂšles [2]. Une loi de puissance de type D = A.Mw-α permet de dĂ©crire les coefficients de diffusion des solutĂ©s en fonction de leur poids molĂ©culaire, avec α 0.5 Ă  la fois dans les fromages Ă  pĂąte molle et dans la phase solvante. Cette valeur de α, caractĂ©ristique d’une diffusion en solution diluĂ©e, signifie que les dextrans diffusent dans le rĂ©seau protĂ©ique sans modification de leur conformation. Ce rĂ©sultat montre que la taille des pores est probablement bien supĂ©rieure Ă  celle de l’ensemble des solutĂ©s Ă©tudiĂ©s (jusqu’à 30 nm pour le 500 kDa). Dans les fromages de type pĂąte pressĂ©e cuite, ce modĂšle n’est valable que pour des molĂ©cules de dextran avec Mw infĂ©rieur Ă  250 kDa. Notre hypothĂšse est que dans ces matrices qui ont une plus faible teneur en « eau libre » et disponible que les pĂątes molles, la vitesse de diffusion des solutĂ©s de 500 kDa est ralentie par une microstructure du rĂ©seau protĂ©ique plus resserrĂ©e, obligeant les dextrans, macromolĂ©cules flexibles connues pour adopter un comportement de reptation Ă  se dĂ©former pour diffuser (thĂ©orie de la reptation [3]).En conclusion, la FRAP est une technique trĂšs puissante pour explorer les propriĂ©tĂ©s de diffusion de solutĂ©s dans des matrices complexes et hĂ©tĂ©rogĂšnes comme le fromage. Elle pourrait ĂȘtre transfĂ©rĂ©e Ă  d'autres matrices alimentaires pour lesquelles les phĂ©nomĂšnes de diffusion sont cruciaux lors des procĂ©dĂ©s de fabrication ou de la conservation des aliments

    Diffusion of macromolecules in cheeses is mainly related to its “free” water content of the fat-free cheese : a Fluorescence Recovery After Photobleaching (FRAP) approach.

    No full text
    In cheese technology, diffusion phenomena are crucial during brining and ripening. The FRAP technique was applied for the first time on real cheeses obtained from different technologies, in order to investigate the relationships between cheese composition and diffusion rates, using dextran molecules in a wide range of sizes.In the soft cheese, diffusion was explained by the obstruction model, meaning that the largest solutes were not more hindered by the matrix structure than the smallest ones. In the hard cheese, the obstruction model was valid only for dextrans smaller than 250 kDa, meaning that pore sizes of the matrix are probably of the same orderof magnitude as the largest dextran (~30nm). Moreover, diffusion coefficients of all dextrans were linearly correlated to the “free” water content of the fat-free cheeses. FRAP is a very powerful technique to explore both diffusion properties and microstructure of complex media such as cheese

    Diffusion of macromolecules in cheeses is mainly related to its “free” water content of the fat-free cheese : a Fluorescence Recovery After Photobleaching (FRAP) approach.

    No full text
    In cheese technology, diffusion phenomena are crucial during brining and ripening. The FRAP technique was applied for the first time on real cheeses obtained from different technologies, in order to investigate the relationships between cheese composition and diffusion rates, using dextran molecules in a wide range of sizes.In the soft cheese, diffusion was explained by the obstruction model, meaning that the largest solutes were not more hindered by the matrix structure than the smallest ones. In the hard cheese, the obstruction model was valid only for dextrans smaller than 250 kDa, meaning that pore sizes of the matrix are probably of the same orderof magnitude as the largest dextran (~30nm). Moreover, diffusion coefficients of all dextrans were linearly correlated to the “free” water content of the fat-free cheeses. FRAP is a very powerful technique to explore both diffusion properties and microstructure of complex media such as cheese

    Bench production and in vivo evaluation of vitamin loaded whey protein coacervates

    No full text
    INTRODUCTION AND OBJECTIVES While functional foods have prompted growing interest to enhance the daily intakes of specific nutrients and to prevent deficiencies , their processes and storage can affect stability, solubility and bioavailability. To overcome these limitations, one alternative is the encapsulation of agents acting into carriers. To ensure industrial sustainability, such encapsulating material should be natural food-grade components (biocarriers), using economical and reliable raw materials and processes. The complex coacervation consists in mixing two polymers of opposite charges. Coacervation exploits the balance of electrostatic interactions between the two biopolymers to form a supramolecular assembly. Coacervation may display high shell integrity and encapsulation efficiency, good controlledrelease properties and mild preparation conditions. These features are interesting to reduce the industrial processing costs (Yan & Zhang, 2014). Whey proteins (WP) is by- products of the dairy industry, providing intrinsic biological properties. Two specific whey proteins has been selected ÎČ-lactoglobulin (BLG) and Lactoferrin (LF) as they able to co-assemble by complex coacervation. Recently the proof of concept that LF-BLG complex coacervates efficiently entrap vitamin B9 (B9) has been established at laboratory scale (Chapeau et al., 2016). This work focuses on the scale-up production of B9-WP coacervates for potential industrial applications. Coacervation is known to be highly sensitive to processing i.e. working volume, interfaces, and mixing conditions. Empirical scale-up could therefore result in increased costs, resources and efforts (Lemetter et al., 2004). Moreover, B9-WP coacervates should preserve the bioavailability of B9 during oral delivery. As a result, this study aims at: 1) investigating the scale-up production of B9-WP coacervate by comparing two mixing systems (in batch or in continuous), and 2) exploring the bioavailability of orally administered B9-WP coacervates

    The influence of cheese composition and microstructure on the diffusion of macromolecules: A study using Fluorescence Recovery After Photobleaching (FRAP)

    No full text
    In cheese technology, the diffusion phenomena are crucial during ripening. The technique of FluorescenceRecovery After Photobleaching was applied for the first time on real cheese, in order to investigate therelationships between molecular diffusion and the cheese composition and/or its microstructure.Measured effective diffusion coefficients in soft and hard cheese of a group of dextrans (10–500 kDa)were found to be in the same order of magnitude with values observed when using a comparablenon-fat model cheese ( 0.1–20 lm2 s 1). Diffusion of the dextrans was mainly dependent on the fractionof ‘‘free’’ aqueous phase present in the cheese, closely which is linked to cheese-making technology andripening stage. Diffusion coefficients were modeled by a power law relationship as a function of dextranmolecular weight, which allowed some study of the cheese microstructure. A tighter protein network willrequire some deformation of those flexible macromolecules with a higher molecular weight (>250 kDa),in order to diffuse through the pores of such cheese structures
    corecore