24 research outputs found

    Comparative Live-Cell Imaging Analyses of SPA-2, BUD-6 and BNI-1 in Neurospora crassa Reveal Novel Features of the Filamentous Fungal Polarisome

    Get PDF
    A key multiprotein complex involved in regulating the actin cytoskeleton and secretory machinery required for polarized growth in fungi, is the polarisome. Recognized core constituents in budding yeast are the proteins Spa2, Pea2, Aip3/Bud6, and the key effector Bni1. Multicellular fungi display a more complex polarized morphogenesis than yeasts, suggesting that the filamentous fungal polarisome might fulfill additional functions. In this study, we compared the subcellular organization and dynamics of the putative polarisome components BUD-6 and BNI-1 with those of the bona fide polarisome marker SPA-2 at various developmental stages of Neurospora crassa. All three proteins exhibited a yeast-like polarisome configuration during polarized germ tube growth, cell fusion, septal pore plugging and tip repolarization. However, the localization patterns of all three proteins showed spatiotemporally distinct characteristics during the establishment of new polar axes, septum formation and cytokinesis, and maintained hyphal tip growth. Most notably, in vegetative hyphal tips BUD-6 accumulated as a subapical cloud excluded from the Spitzenkörper (Spk), whereas BNI-1 and SPA-2 partially colocalized with the Spk and the tip apex. Novel roles during septal plugging and cytokinesis, connected to the reinitiation of tip growth upon physical injury and conidial maturation, were identified for BUD-6 and BNI-1, respectively. Phenotypic analyses of gene deletion mutants revealed additional functions for BUD-6 and BNI-1 in cell fusion regulation, and the maintenance of Spk integrity. Considered together, our findings reveal novel polarisome-independent functions of BUD-6 and BNI-1 in Neurospora, but also suggest that all three proteins cooperate at plugged septal pores, and their complex arrangement within the apical dome of mature hypha might represent a novel aspect of filamentous fungal polarisome architecture

    1.4 The Cerebral Tricarboxylic Acid Cycles

    No full text
    We review the operation of the cerebral tricarboxylic acid (TCA) cycles in the neuronal and glial compartments of the adult rat brain, with an emphasis on the mechanisms underlying intercellular oxidative coupling during glutamatergic neurotransmission. We begin with an update of the enzymatic properties, gene location, regulation, and regional distribution of the enzymes involved. Then, we describe the main methodologies used to investigate TCA cycle activity in vitro and in vivo such as autoradiography, positron emission tomography (PET), nuclear magnetic resonance (NMR) imaging or spectroscopy, and dual photon fluorescence microscopy. Previous interpretations conceived cerebral glucose metabolism during glutamatergic neurotransmission as a coupled process, involving exclusively anaerobic metabolism in the astrocytes and oxidative metabolism in the neurons. The glutamine cycle was proposed to be stoichiometrically coupled to astrocytic glucose uptake, glutamine synthesis being supported by astrocytic glycolysis only and glutamine being the main precursor of cerebral glutamate. Compelling evidences have accumulated since then, showing that astrocytes display significant oxidative capacity in vivo, more than 60% of the glutamine is produced from ATP synthesized by astroglial oxidative phosphorylation, and approximately 40% of cerebral glutamate is not derived from glutamine. Together, these findings suggest that the coupling mechanisms between astrocytic and neuronal oxidative and nonoxidative metabolisms are more complex than initially envisioned. In this review, we propose a novel mechanism based on the operation of intracellular redox switches and the transcellular coupling of the NAD(P)/NAD (P)H redox states between both cell types through lactate transfers. The redox switch/redox coupling hypothesis is compatible with the simultaneous operation of glycolytic and oxidative metabolisms in both neural cell types. Transcellular redox coupling through lactate transfers mimics the intracellular coupling existing between cytosolic NADH production and mitochondrial NADH oxidation, as seen from the redox shuttles exchanging reducing equivalents through the inner mitochondrial membrane of neural cells.This work was supported in part by grants SAF 2001‐224, SAF 2004‐03197, FISss C03/08, G03/155, C03/10 and PI051530 to S.C. JUSTESA IMAGEN S.A. provided the core support of LISMAR during this work. T.B. R was supported by a fellowship from Fundaçâo para a Ciência e Tecnologia, Portugal (SFRH/BD/5407/2001).Peer reviewe

    Pathophysiology and epidemiology of peripartum cardiomyopathy

    No full text
    Cardiovascular diseases are a major cause of complications in pregnancy worldwide, and the number of patients who develop cardiac problems during pregnancy is increasing. Peripartum cardiomyopathy (PPCM) is a potentially life-threatening heart disease that emerges towards the end of pregnancy or in the first months postpartum, in previously healthy women. Symptoms and signs of PPCM are similar to those in patients with idiopathic dilated cardiomyopathy. The incidence varies geographically, most likely because of socioeconomic and genetic factors. The syndrome is associated with a high morbidity and mortality, and diagnosis is often delayed. Various mechanisms have been investigated, including the hypothesis that unbalanced peripartum or postpartum oxidative stress triggers the proteolytic cleavage of the nursing hormone prolactin into a potent antiangiogenic, proapoptotic, and proinflammatory 16 kDa fragment. This theory provides the basis for the discovery of disease-specific biomarkers and promising novel therapeutic targets. In this Review, we describe the latest understanding of the epidemiology, pathophysiology, and novel treatment strategies for patients with PPCM
    corecore