140 research outputs found

    Research on Shanghai Port logistics collection and distribution network optimization

    Get PDF

    A Comparative Study of \u3ci\u3eK\u3c/i\u3e-Spectrum-Based Error Correction Methods for Next-Generation Sequencing Data Analysis

    Get PDF
    Background: Innumerable opportunities for new genomic research have been stimulated by advancement in high-throughput next-generation sequencing (NGS). However, the pitfall of NGS data abundance is the complication of distinction between true biological variants and sequence error alterations during downstream analysis. Many error correction methods have been developed to correct erroneous NGS reads before further analysis, but independent evaluation of the impact of such dataset features as read length, genome size, and coverage depth on their performance is lacking. This comparative study aims to investigate the strength and weakness as well as limitations of some newest k-spectrum-based methods and to provide recommendations for users in selecting suitable methods with respect to specific NGS datasets. Methods: Six k-spectrum-based methods, i.e., Reptile, Musket, Bless, Bloocoo, Lighter, and Trowel, were compared using six simulated sets of paired-end Illumina sequencing data. These NGS datasets varied in coverage depth (10× to 120×), read length (36 to 100 bp), and genome size (4.6 to 143 MB). Error Correction Evaluation Toolkit (ECET) was employed to derive a suite of metrics (i.e., true positives, false positive, false negative, recall, precision, gain, and F-score) for assessing the correction quality of each method. Results: Results from computational experiments indicate that Musket had the best overall performance across the spectra of examined variants reflected in the six datasets. The lowest accuracy of Musket (F-score = 0.81) occurred to a dataset with a medium read length (56 bp), a medium coverage (50×), and a small-sized genome (5.4 MB). The other five methods underperformed (F-score \u3c 0.80) and/or failed to process one or more datasets. Conclusions: This study demonstrates that various factors such as coverage depth, read length, and genome size may influence performance of individual k-spectrum-based error correction methods. Thus, efforts have to be paid in choosing appropriate methods for error correction of specific NGS datasets. Based on our comparative study, we recommend Musket as the top choice because of its consistently superior performance across all six testing datasets. Further extensive studies are warranted to assess these methods using experimental datasets generated by NGS platforms (e.g., 454, SOLiD, and Ion Torrent) under more diversified parameter settings (k-mer values and edit distances) and to compare them against other non-k-spectrum-based classes of error correction methods

    RefNetBuilder: a platform for construction of integrated reference gene regulatory networks from expressed sequence tags

    Get PDF
    Background: Gene Regulatory Networks (GRNs) provide integrated views of gene interactions that control biological processes. Many public databases contain biological interactions extracted from experimentally validated literature reports, but most furnish only information for a few genetic model organisms. In order to provide a bioinformatic tool for researchers who work with non-model organisms, we developed RefNetBuilder, a new platform that allows construction of putative reference pathways or GRNs from expressed sequence tags (ESTs). Results: RefNetBuilder was designed to have the flexibility to extract and archive pathway or GRN information from public databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG). It features sequence alignment tools such as BLAST to allow mapping ESTs to pathways and GRNs in model organisms. A scoring algorithm was incorporated to rank and select the best match for each query EST. We validated RefNetBuilder using DNA sequences of Caenorhabditis elegans, a model organism having manually curated KEGG pathways. Using the earthworm Eisenia fetida as an example, we demonstrated the functionalities and features of RefNetBuilder. Conclusions: The RefNetBuilder provides a standalone application for building reference GRNs for non-model organisms on a number of operating system platforms with standard desktop computer hardware. As a new bioinformatic tool aimed for constructing putative GRNs for non-model organisms that have only ESTs available, RefNetBuilder is especially useful to explore pathway- or network-related information in these organisms

    Identification and Optimization of Classifier Genes from Multi-Class Earthworm Microarray Dataset

    Get PDF
    Monitoring, assessment and prediction of environmental risks that chemicals pose demand rapid and accurate diagnostic assays. A variety of toxicological effects have been associated with explosive compounds TNT and RDX. One important goal of microarray experiments is to discover novel biomarkers for toxicity evaluation. We have developed an earthworm microarray containing 15,208 unique oligo probes and have used it to profile gene expression in 248 earthworms exposed to TNT, RDX or neither. We assembled a new machine learning pipeline consisting of several well-established feature filtering/selection and classification techniques to analyze the 248-array dataset in order to construct classifier models that can separate earthworm samples into three groups: control, TNT-treated, and RDX-treated. First, a total of 869 genes differentially expressed in response to TNT or RDX exposure were identified using a univariate statistical algorithm of class comparison. Then, decision tree-based algorithms were applied to select a subset of 354 classifier genes, which were ranked by their overall weight of significance. A multiclass support vector machine (MC-SVM) method and an unsupervised K-mean clustering method were applied to independently refine the classifier, producing a smaller subset of 39 and 30 classifier genes, separately, with 11 common genes being potential biomarkers. The combined 58 genes were considered the refined subset and used to build MC-SVM and clustering models with classification accuracy of 83.5% and 56.9%, respectively. This study demonstrates that the machine learning approach can be used to identify and optimize a small subset of classifier/biomarker genes from high dimensional datasets and generate classification models of acceptable precision for multiple classes

    Comparison of Probabilistic Boolean Network and Dynamic Bayesian Network Approaches for Inferring Gene Regulatory Networks

    Get PDF
    Background: The regulation of gene expression is achieved through gene regulatory networks (GRNs) in which collections of genes interact with one another and other substances in a cell. In order to understand the underlying function of organisms, it is necessary to study the behavior of genes in a gene regulatory network context. Several computational approaches are available for modeling gene regulatory networks with different datasets. In order to optimize modeling of GRN, these approaches must be compared and evaluated in terms of accuracy and efficiency. Results: In this paper, two important computational approaches for modeling gene regulatory networks, probabilistic Boolean network methods and dynamic Bayesian network methods, are compared using a biological time-series dataset from the Drosophila Interaction Database to construct a Drosophila gene network. A subset of time points and gene samples from the whole dataset is used to evaluate the performance of these two approaches. Conclusions: The comparison indicates that both approaches had good performance in modeling the gene regulatory networks. The accuracy in terms of recall and precision can be improved if a smaller subset of genes is selected for inferring GRNs. The accuracy of both approaches is dependent upon the number of selected genes and time points of gene samples. In all tested cases, DBN identified more gene interactions and gave better recall than PBN

    \u3ci\u3eIn silico\u3c/i\u3e identification of genetic mutations conferring resistance to acetohydroxyacid synthase inhibitors: A case study of \u3ci\u3eKochia scoparia\u3c/i\u3e

    Get PDF
    Mutations that confer herbicide resistance are a primary concern for herbicide-based chemical control of invasive plants and are often under-characterized structurally and functionally. As the outcome of selection pressure, resistance mutations usually result from repeated long-term applications of herbicides with the same mode of action and are discovered through extensive field trials. Here we used acetohydroxyacid synthase (AHAS) of Kochia scoparia (KsAHAS) as an example to demonstrate that, given the sequence of a target protein, the impact of genetic mutations on ligand binding could be evaluated and resistance mutations could be identified using a biophysics-based computational approach. Briefly, the 3D structures of wild-type (WT) and mutated KsAHAS-herbicide complexes were constructed by homology modeling, docking and molecular dynamics simulation. The resistance profile of two AHAS-inhibiting herbicides, tribenuron methyl and thifensulfuron methyl, was obtained by estimating their binding affinity with 29 KsAHAS (1 WT and 28 mutated) using 6 molecular mechanical (MM) and 18 hybrid quantum mechanical/molecular mechanical (QM/MM) methods in combination with three structure sampling strategies. By comparing predicted resistance with experimentally determined resistance in the 29 biotypes of K. scoparia field populations, we identified the best method (i.e., MM-PBSA with single structure) out of all tested methods for the herbicide-KsAHAS system, which exhibited the highest accuracy (up to 100%) in discerning mutations conferring resistance or susceptibility to the two AHAS inhibitors. Our results suggest that the in silico approach has the potential to be widely adopted for assessing mutation-endowed herbicide resistance on a case-by-case basis

    MICRAT: A Novel Algorithm for Inferring Gene Regulatory Networks Using Time Series Gene Expression Data

    Get PDF
    Background: Reconstruction of gene regulatory networks (GRNs), also known as reverse engineering of GRNs, aims to infer the potential regulation relationships between genes. With the development of biotechnology, such as gene chip microarray and RNA-sequencing, the high-throughput data generated provide us with more opportunities to infer the gene-gene interaction relationships using gene expression data and hence understand the underlying mechanism of biological processes. Gene regulatory networks are known to exhibit a multiplicity of interaction mechanisms which include functional and non-functional, and linear and non-linear relationships. Meanwhile, the regulatory interactions between genes and gene products are not spontaneous since various processes involved in producing fully functional and measurable concentrations of transcriptional factors/proteins lead to a delay in gene regulation. Many different approaches for reconstructing GRNs have been proposed, but the existing GRN inference approaches such as probabilistic Boolean networks and dynamic Bayesian networks have various limitations and relatively low accuracy. Inferring GRNs from time series microarray data or RNA-sequencing data remains a very challenging inverse problem due to its nonlinearity, high dimensionality, sparse and noisy data, and significant computational cost, which motivates us to develop more effective inference methods. Results: We developed a novel algorithm, MICRAT (Maximal Information coefficient with Conditional Relative Average entropy and Time-series mutual information), for inferring GRNs from time series gene expression data. Maximal information coefficient (MIC) is an effective measure of dependence for two-variable relationships. It captures a wide range of associations, both functional and non-functional, and thus has good performance on measuring the dependence between two genes. Our approach mainly includes two procedures. Firstly, it employs maximal information coefficient for constructing an undirected graph to represent the underlying relationships between genes. Secondly, it directs the edges in the undirected graph for inferring regulators and their targets. In this procedure, the conditional relative average entropies of each pair of nodes (or genes) are employed to indicate the directions of edges. Since the time delay might exist in the expression of regulators and target genes, time series mutual information is combined to cooperatively direct the edges for inferring the potential regulators and their targets. We evaluated the performance of MICRAT by applying it to synthetic datasets as well as real gene expression data and compare with other GRN inference methods. We inferred five 10-gene and five 100-gene networks from the DREAM4 challenge that were generated using the gene expression simulator GeneNetWeaver (GNW). MICRAT was also used to reconstruct GRNs on real gene expression data including part of the DNA-damaged response pathway (SOS DNA repair network) and experimental dataset in E. Coli. The results showed that MICRAT significantly improved the inference accuracy, compared to other inference methods, such as TDBN, etc. Conclusion: In this work, a novel algorithm, MICRAT, for inferring GRNs from time series gene expression data was proposed by taking into account dependence and time delay of expressions of a regulator and its target genes. This approach employed maximal information coefficients for reconstructing an undirected graph to represent the underlying relationships between genes. The edges were directed by combining conditional relative average entropy with time course mutual information of pairs of genes. The proposed algorithm was evaluated on the benchmark GRNs provided by the DREAM4 challenge and part of the real SOS DNA repair network in E. Coli. The experimental study showed that our approach was comparable to other methods on 10-gene datasets and outperformed other methods on 100-gene datasets in GRN inference from time series datasets

    Development of Estrogen Receptor Beta Binding Prediction Model Using Large Sets of Chemicals

    Get PDF
    We developed an ERβ binding prediction model to facilitate identification of chemicals specifically bind ERβ or ERα together with our previously developed ERα binding model. Decision Forest was used to train ERβ binding prediction model based on a large set of compounds obtained from EADB. Model performance was estimated through 1000 iterations of 5-fold cross validations. Prediction confidence was analyzed using predictions from the cross validations. Informative chemical features for ERβ binding were identified through analysis of the frequency data of chemical descriptors used in the models in the 5-fold cross validations. 1000 permutations were conducted to assess the chance correlation. The average accuracy of 5-fold cross validations was 93.14% with a standard deviation of 0.64%. Prediction confidence analysis indicated that the higher the prediction confidence the more accurate the predictions. Permutation testing results revealed that the prediction model is unlikely generated by chance. Eighteen informative descriptors were identified to be important to ERβ binding prediction. Application of the prediction model to the data from ToxCast project yielded very high sensitivity of 90-92%. Our results demonstrated ERβ binding of chemicals could be accurately predicted using the developed model. Coupling with our previously developed ERα prediction model, this model could be expected to facilitate drug development through identification of chemicals that specifically bind ERβ or ERα
    corecore