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ABSTRACT

We developed an ERβ binding prediction model to facilitate identification of 
chemicals specifically bind ERβ or ERα together with our previously developed ERα 
binding model. Decision Forest was used to train ERβ binding prediction model based 
on a large set of compounds obtained from EADB. Model performance was estimated 
through 1000 iterations of 5-fold cross validations. Prediction confidence was 
analyzed using predictions from the cross validations. Informative chemical features 
for ERβ binding were identified through analysis of the frequency data of chemical 
descriptors used in the models in the 5-fold cross validations. 1000 permutations 
were conducted to assess the chance correlation. The average accuracy of 5-fold cross 
validations was 93.14% with a standard deviation of 0.64%. Prediction confidence 
analysis indicated that the higher the prediction confidence the more accurate the 
predictions. Permutation testing results revealed that the prediction model is unlikely 
generated by chance. Eighteen informative descriptors were identified to be important 
to ERβ binding prediction. Application of the prediction model to the data from ToxCast 
project yielded very high sensitivity of 90-92%. Our results demonstrated ERβ binding 
of chemicals could be accurately predicted using the developed model. Coupling 
with our previously developed ERα prediction model, this model could be expected to 
facilitate drug development through identification of chemicals that specifically bind 
ERβ or ERα.

INTRODUCTION

Estrogen receptor (ER) is the ligand-dependent 
transcriptional factor. ER belongs to the nuclear receptor 
family. ERα and ERβ are the two major isoforms reported 
for ER [1–3]. The two isoforms have different functions 
with various concentrations in tissues. Compared to 
ERα, ERβ has wider tissue distribution [4]. ERβ has 
similar structure architecture with other nuclear receptor 
proteins and contains 3 distinct domains: (i) N-terminal 
domain (NTD), (ii) DNA-binding domain (DBD), and 

(iii) Ligand-binding domain (LDB) or C-terminal domain 
(CTD). The NTD and LBD contain ligand responsive 
transcriptional activation function 1 (AF1) and activation 
function 2 (AF2) domains. The AF1 and AF2 domains 
are responsible for the regulation of the transcriptional 
activity of ERβ [5]. ERβ DBD and LBD had shown more 
than 95% and 55% sequence similarity with ERα DBD 
and LBD, respectively. The ERβ NTD is shorter than 
the ERα NTD and shows a very low sequence homology 
[6]. ERβ presents in both the nucleus and cytoplasm of 
the normal and cancer cells while ERα which presents 

www.impactjournals.com/oncotarget/              Oncotarget, 2017, Vol. 8, (No. 54), pp: 92989-93000

                                                     Research Paper



Oncotarget92990www.impactjournals.com/oncotarget

in nuclei of benign and cancer cells. The cytoplasmic 
ERβ binds with the estradiol or agonist and moves into 
the nucleus to form homo-dimer and then binds with the 
specific estrogen response elements (EREs) to activate the 
transcription process through the interaction between the 
transcriptional modulators and recruitment of the general 
transcriptional machinery [7]. ERβ may act as a marker in 
various types of cancers and a significant predictor in the 
breast cancer treated with tamoxifen [8]. ERβ is a potential 
cancer target, highly expressed in various cancers which 
are reported as a negative for ERα [9]. The gene expression 
of ERβ is different from ERα which plays an important role 
in the breast and uterine cancers. Due to the high similarity 
between the two isoforms, it is highly challenging to 
design or identify compounds which specifically target 
one subtype. Emerging data for ER indicates that the 
identification of selective agonist or antagonist for ERβ 
will help treat various cancers such as colon, breast, 
prostate, and lungs with lower side effects. Hence ERβ is 
considered as one of the emerging oncogene target.

Selective estrogen receptor modulator (SERM) is a 
drug or small molecule that acts as an agonist or antagonist 
by specifically binding to one of these two ER isoforms in 
the target tissues based on its specificity. The difference in 
binding activity to the two ER isoforms of a chemical is 
the metric for determination of chemicals that specifically 
bind for ERα or ERβ. The main mechanism of SERMs is to 
alter the estrogenic activity in the target tissues specificity. 
SERMs can selectively block the estrogens action in the 
breast cells and activate the estrogens action in bone, 
liver, and uterine cells. Hence, identification of selective 
estrogenic activity compound is an important task in 
drug discovery. Experimental identification of selective 
estrogenic activity compound is doable but very expensive 
and time consuming from a large pool of chemicals. 
Hence, in silico approaches for screening potential 
selective estrogenic activity compounds are in need. Some 
prediction models were developed using different in silico 
techniques such as pharmacophore model and molecular 
docking [10, 11].

Multiple quantitative structure activity relationship 
(QSAR) models have been developed for predicting ERα 
binding activity using large sets of chemicals to ensure 
prediction reliability [12, 13]. Previously, we developed an 
ERα predictive model using the data set from Estrogenic 
Activity Database (EADB) and validated the model using 
a large data set from ToxCast [13]. Some QSAR models 
have been developed for predicting ERβ binding activity 
based on small sizes of chemicals of the particular scaffolds 
that cover a small chemical space [14–22]. Many factors 
affect the quality of a QSAR model, including the number 
of compounds and their chemical space coverage used for 
training, the algorithm used to train the model, and the 
method for validation of the model. More reliable QSAR 
models for ERβ binding activity need to be developed using 
large sets of diverse chemicals covering a large chemical 

space. Hence, in this study, we developed a QSAR model 
for predicting ERβ binding activity using large sets of 
chemicals which covers a wide range of chemical space.

DF (Decision Forest) algorithm [23–25] was used for 
development of the ERβ binding activity prediction model. 
The large set of chemicals and their ERβ binding activity 
data were collected from EADB [26, 27] and used to train 
the QSAR model. The compounds from the ToxCast data 
were used as an application data set to estimate concordance 
between the ERβ model predictions by traditional assay 
and the high-throughput screening results. The important 
molecular descriptors for ERβ binding were identified using 
the cross validations. Prediction confidence was analyzed to 
provide an additional metric for application of the ERβ QSAR 
model.

RESULTS

Cross validations

One thousand 5-fold cross validations were 
conducted to assess the goodness and robustness of the 
ERβ predictive models constructed from the training set. 
The results of the cross validations were summarized in 
Figure 1 (the blue bars). The average prediction accuracy, 
sensitivity, and specificity values for the 1000 5-fold cross 
validations were 93.1%, 93.6%, and 55.2%, respectively, 
indicating the ERβ predictive models performed well. 
Moreover, the standard deviations of prediction accuracy, 
sensitivity, and specificity in the 1000 cross validations 
were 0.6%, 0.7%, and 6.1%, respectively. The small 
fluctuation in the performance of the models in the 
cross validations demonstrated the robustness of the ERβ 
predictive models generated in the cross validations. Not 
surprisingly, the average specificity was low because 
much fewer ERβ non-binders than binders were included 
in the training data set. It is expected that specificity could 
be improved when more ERβ non-binders were identified 
for training the model.

Permutation tests

The same performance metrics (prediction accuracy, 
sensitivity, and specificity) were calculated for the ERβ 
prediction models constructed in the 1000 permutation 
tests and were plotted as the red bars in Figure 1. The 
predictive accuracy, sensitivity, specificity, MCC, and 
balanced accuracy values for the 1000 permutation 
tests were 84.2%, 85.0%, 15.1%, 0.0%, and 50.0%, 
respectively, and their corresponding standard deviations 
were 1.5%, 1.5%, 6.5%, 2.0%, and 3.2%, respectively. The 
0.0% MCC and 50.0% balanced accuracy obtained from 
the permutations matched the expectation for modeling 
random data sets, confirming the modeling process should 
be implemented correctly. The performance comparison 
between the 5-fold cross validations and permutation 
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tests revealed that the 5-fold cross validations much 
outperformed the permutation tests, demonstrating the ERβ 
predictive models constructed from the training set had a 
good predictive power and were obtained unlikely solely 
by chance.

Prediction confidence

The confidence analysis was performed on the 
predictions from the 5-fold cross validations. The 
predictions near evenly distributed in the 10 prediction 
confidence bins as shown by the black diamonds in 
Figure 2. When the prediction confidence increased, the 
performance of the corresponding predictions was also 
improved (accuracy, sensitivity, and specificity were all 
increased as depicted by the red, blue, and cyan circles, 
respectively). It is worth to note that when prediction 
confidence reached 0.8 or higher, the predictions were 
extremely accurate, close to 100% (95% for specificity). 
The prediction confidence analysis demonstrated that 
prediction confidence could be an additional metric for 
real application of the ERβ predictive model developed in 
this study.

Informative descriptors

The 447 molecular descriptors in the training set 
were used in different predictive ERβ models generated 
in the 5-fold cross validations. The frequency (number of 

models) of each descriptor in the cross validations were 
calculated. These 447 molecular descriptors were then 
ranked by their frequency values. The top 18 descriptors 
were shown in Supplementary Table 1. Close up at the 
18 descriptors revealed three physical chemical properties 
(atomic polarizability, electronegative, and van der 
Waals) were informative to the prediction models and 
should play major roles in ERβ binding of chemicals. The 
findings are consistent with our previously developed 
ERα model that revealed molecular weight, van der Waals 
volume, polarizability, and aromatic rings are important 
for a chemical to bind ERα [13]. Comparative analysis 
on structures of the two proteins showed that the binding 
sites are similar for ERβ and ERα. Off the 23 residues in 
the binding pockets, only two (ERβ M336 and I373 versus 
ERα L384 and M421) are different (Supplementary Figure 
1), confirming the similar chemical structural features 
for binding of the two receptors with a subtle difference 
(electronegative is important for ERβ binding and aromatic 
ring is vital to ERα binding).

Concordance between EADB and ToxCast

The experimental data of the 21 common compounds 
were compared to calculate the concordance between 
ToxCast ERβ dimerization assays activity and EADB ERβ 
binding activity. The 21 common compounds were all 
binders in EADB. ToxCast OT_ER_ERβERβ_0480 ERβ 
dimerization assay showed 15 actives and 6 inactives (Table 

Figure 1: Performance of the 5-fold cross validations (blue bars) and permutation tests (red bars). Standard deviations 
were given on top of the bars. Performance metrics are indicated at the x-axis.



Oncotarget92992www.impactjournals.com/oncotarget

1), while ToxCast OT_ER_ERβERβ_1440 ERβ dimerization 
assay found 18 actives and 3 inactives (Table 2). If the 
experimental ERβ binding assay data in EADB were used to 
predict ToxCast ERβ dimerization data for the 21 common 
compounds, the prediction accuracy would be 71.4% and 
85.7% for ToxCast OT_ER_ERβERβ_0480 and OT_ER_
ERβERβ_1440 assays, respectively.

Applications to ToxCast data

The 1805 compounds that were tested using ToxCast 
OT_ER_ERβERβ_0480 assay and the 1800 compounds 
that were tested using ToxCast OT_ER_ERβERβ_1440 
assay were predicted using the ERβ binding prediction 
model generated based on EADB data. Overall prediction 
accuracy for ERβ dimerization activity using the model 
was low, 28.4% and 26.7% for OT_ER_ERβERβ_0480 and 
OT_ER_ERβERβ_1440, respectively. Prediction confidence 
analysis showed that high confidence predictions performed 
better than low confidence predictions (Figure 3). As the 

training data set had much less non-binders than binders, it 
is expected that the model would have better prediction on 
ERβ binders than non-binders (Figure 1). We examined the 
performance of the model on actives in ERβ dimerization. 
Of the 175 actives from OT_ER_ERβERβ_0480 assay, 162 
were predicted as ERβ binders (Table 3). The sensitivity 
92.6% was very comparable to the sensitivity 93.6% in 
cross validations and 100% concordance for experimental 
actives and binders (Table 1). Of the 150 actives from 
OT_ER_ERβERβ_1440 assay, 135 were predicted as ERβ 
binders (Table 4). Again, the sensitivity 90% was close 
to the cross validation and experimental data comparison 
(Table 2). The prediction on actives in ToxCast ERβ 
dimerization assays indicated that the ERβ predictive model 
trained using ERβ binding activity data from EADB could 
be extrapolated well to predict actives in ERβ dimerization. 
As expected, extrapolation of the model to inactives should 
be very cautious as very low specificity was yield in the 
applications: 21.5% and 21.0% for OT_ER_ERβERβ_0480 
and OT_ER_ERβERβ_1440 assays, respectively.

Figure 2: Confidence analysis result. The accuracy (red circles), sensitivity (blue circles), and specificity (cyan circles) were given 
at the left y-axis and the numbers of predictions were plotted as black diamonds at the right y-axis for 10 even prediction confidence bins 
that were indicated at the x-axis.

Table 1: Comparison between EADB and ToxCast data of common compounds

OT_ER_ERβERβ_0480 Assay Active Inactive Total

Binder 15 6 21

EADB Non-binder 0 0 0

Total 15 6 21
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DISCUSSION

The training set compounds were collected from 
the EADB with a well-defined end point (LogRBA) 
value which covers a wide range of ERβ binding activity. 

Multiple data points for the same compound were merged 
to a single value to classify the compound as an ERβ binder 
or non-binder. The training set has imbalanced distribution 
of ERβ binders (98.8%) and non-binders (1.2%). The 
high imbalance in samples is a challenging issue in 

Table 2: Comparison between EADB and ToxCast data of common compounds

OT_ER_ERβERβ_1440 Assay Active Inactive Total

Binder 18 3 21

EADB Non-binder 0 0 0

Total 18 3 21

Table 3: Predictions on OT_ER_ERβERβ_0480 assay data

OT_ER_ERβERβ_0480 Active Inactive Total

Binder 162 1280 1442

Prediction Non-binder 13 350 363

Total 175 1630 1805

Table 4: Predictions on OT_ER_ERβERβ_1440 assay data

OT_ER_ERβERβ_1440 Active Inactive Total

Binder 135 1304 1439

Prediction Non-binder 15 346 361

Total 150 1650 1800

Figure 3: Result of application of the developed ERβ binding activity prediction model to the dimerization assays 
(labeled at the x-axis) in ToxCast. Overall prediction accuracy (cyan) and prediction accuracy for high confidence predictions (blue) 
and low confidence predictions (red) were plotted as bars.
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Figure 4: Chemical space of ERβ binders (blue circles) and non-binders (red circles).

Figure 5: Study design. Data from EADB was used as a training set. Mold2 in-house software was used to generate the molecular 
descriptors for all compounds. Decision Forest (DF) classification method was used to generate ERβ predictive models. Five-fold 
cross validations (red dashed boxes) were conducted 1000 times (blue dashed boxes) in cross validations (left panel and Result 1) and 
permutation tests (right panel and Result 4). Based on the 5-fold cross validations, prediction confidence analysis was conducted (Result 2) 
and informative descriptor were identified (Result 3). ToxCast data of 2 dimerization assays were used assess the capability of the model 
(Result 6).
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machine learning. Even with the robust algorithm DF, the 
performance of the developed model is expected to be 
different between ERβ binders and non-binders. The analysis 
of performance of the 5-fold cross validations yielded a 
very high sensitivity (93.6%) and a low specificity (55.2%) 
are consistent with the expectation. The permutation tests 
results also confirmed that the bias to prediction on ERβ 
binders because of imbalanced samples even there were no 
signals in the data sets (randomly permuted samples). In 
addition to the difference in numbers of ERβ binders and 
non-binders, different chemical spaces covered by ERβ 
binders and non-binders were observed (Figure 4). The ERβ 
binders not only covered larger chemical space than non-
binders but also had much higher density in the covered 
chemicals as shown in Figure 4. Much more chemical 
knowledge on ERβ binders than non-binders were learned 
by DF to generate the prediction model. It is not surprising 
that the prediction model had much better performance on 
ERβ binders than non-binders. Therefore, it is expected 
that including more non-binders in the training set would 
increase the chemical space of non-binders and improve 
performance of the prediction model based on a more 
balanced training set.

We not only demonstrated overall goodness of 
the ERβ binding prediction model but also conducted 
prediction confidence analysis to provide an additional 

metric that can be used in real applications of the model. 
The confidence analysis of the cross validation results 
(Figure 2) revealed that the ERβ predictive models showed 
high accuracy for the predictions with high confidence, 
while the predictions with low confidence did not perform 
well, especially for the predictions with confidence less 
than 0.3 (Figure 2). Therefore, in real applications of 
our ERβ binding activity prediction model, utilization of 
predictions with low confidence should be cautious.

We applied the ERβ binding activity prediction 
model to the ERβ related active data in ToxCast to assess 
the capability of extrapolation of the model to other ERβ 
related endpoints such as the two ERβ dimerization assays. 
The application results revealed that the ERβ predictive 
model trained using the binding activity data from EABD 
was able to predict most of the actives from the two ERβ 
dimerization assays (Tables 3 and 4). However, as expected 
the ERβ predictive model did not show a good performance 
for predicting inactives from two ERβ dimerization 
assays. One of the reasons for the poor performance of 
the ERβ predictive model on the inactive chemicals in the 
dimerization assays might be due to the difference in the 
assays for the training data and application data. The gene 
expression modulated by ERβ is a cascade of events: ligand 
binding ERβ induces ERβ dimerization, translocation of 
ERβERβ dimers to the nucleus, and recognition of Estrogen 

Figure 6: Data sets used in this study. Training data set was collected from EADB (left blue panel). Common data set contained 21 
chemicals that had data in both ToxCast and EADB (middle of the right light brown panel). Application data sets were extracted from the 
two ERβ dimerization assays data in ToxCast (the right light brown panel) and not contained in the training data set. Assay 1- OT_ER_
ERβERβ_0480 and Assay 2 – OT_ER_ERβERβ_1440. B – Binder and NB – Non-binder.
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Response Elements (EREs) on DNA. Binding assays and 
dimerization assays measure a chemical activity on two 
different events in the function mechanism. Therefore, 
extrapolation of the developed model to prediction 
of inactives from other ERβ related endpoints such as 
dimerization should be very cautious. The model could be 
improved by adding more inactive compounds in training to 
increase chemical space for inactivs.

Comparison between the cross validations and 
the applications revealed that extrapolation to ERβ 
dimerization assay data yield less accurate predictions 
than the cross validations, especially for the predictions 
on the inactives. The reasons for that could be (i) all the 
ERβ binders play a role in the dimerization of ERβ,(ii) 
the EADB reported binders are not necessary to lead a 
dimerization signal to be observed in the ERβ dimerization 
assays, and (iii) the traditional ERβ binding assays are 
different from the high-throughput screening assays.

The ERβ binding activity prediction model 
was developed and its prediction performance and 
extrapolation to other ERβ related endpoints data were 
demonstrated. Comparison of ERβ binding activity 
predicted by the model developed in this study with ERα 
binding activity estimated using our previous ERα model 
[13] could identify chemicals that specifically bind ERα or 
ERβ, facilitating drug discovery and development.

MATERIALS AND METHODS

Study design

The study design was depicted in Figure 5. The data 
sets were collected from two large data sources: EADB 
[26] and ToxCast databases [28, 29]. The compounds 
from EADB were used to develop the ERβ predictive 
model using DF. The ERβ binding affinity data from 
EADB (recorded as logarithmic value of relative binding 
activity (logRBA)) were used to determine ERβ binders 
or non-binders for the training compounds. The activity 
values for 1812 compounds from two ERβ related assays 
in the ToxCast were used to assess concordance between 
EADB and ToxCast data as well as to estimate the 
performance of the QSAR model for predicting ToxCast 
results. The common compounds contained in both 
EADB and ToxCast databases were used for assessing the 
concordance. The compounds only assayed in ToxCast 
were used for estimating the goodness of extrapolation 
of the QSAR model to high-through screening assays. 
The Mold2 software [30] was used to generate the 
molecular descriptors for compounds in the training and 
application sets. The generated molecular descriptors 
were preprocessed to remove the less informative 
descriptors. The preprocessed training data set were used 
to develop the ERβ predictive model using DF [2, 23, 
31–33]. Robustness of performance of the ERβ predictive 
models were estimated through 5-fold cross-validations. 

Prediction confidence of the 5-fold cross-validation results 
was analyzed. The critical molecular descriptors to ERβ 
binding were identified by the analysis of their frequency 
in the models during the cross validations. Predictive 
power and chance correlation of the models were assessed 
using permutation tests. The developed model was then 
used to predict ERβ activity of chemical assayed in 
ToxCast.

Data sets preparations

Training data set

The training set compounds were extracted from the 
FDA’s EADB [24, 26, 27, 31, 33-36]. The ERβ binding 
activity (binder or non-binder) for 2492 compounds were 
determined based on their logRBA (Relative Binding 
Affinity) values. The binding assays measure ERβ 
binding affinity of chemicals. Most of the ERβ binding 
activity data in EADB are determined using competitive 
binding assays. A competitive binding assay works 
by measuring how well a chemical competes with the 
radiolabeled ligand for the receptor ERβ and the binding 
affinity of the chemical is given as an IC50 value. For the 
experiments with the same reference chemical tested, the 
binding affinity IC50 values were converted into logRBA 
values. A compound was assigned as an ERβ binder if its 
logRBA value is equal to or greater than -5; otherwise the 
compound was determined as a non-binder (Figure 6). 
If a compound contains more than one logRBA value, it 
was assigned as an ERβ binder or non-binder based on the 
consensus. Of the 2492 training compounds, 2462 were 
determined as ERβ binders and only 30 were non-binders. 
The determination of ERβ binder or non-binder for the 
2492 compounds was given in Supplementary Table 2.
Application data sets

There are 1858 compounds in the ToxCast database 
that were tested by ERβ dimerization assays (http://
epa.gov/ncct/toxcast/data.html, accessed on March 2, 
2016) [28, 29, 37, 38] such as OT_ER_ERβERβ_0480 
and OT_ER_ERβERβ_1440. These two assays use a 
yellow fluorescent protein reporter that is dissected into 
two fragments and fused to two ERβ to interact within 
a signaling complex. The reporter is fully assembled 
when ERβ dimerize. Therefore, when the ERβ molecules 
are physically separated, no signal is detected; however, 
when two ERβ are in close physical proximity, the two 
fragments from the reporter interact to elicit a signal. 
Changes in signal intensity and location are used to 
measure dimerization activity of a chemical. Twenty-
five compounds which do not have CAS numbers were 
removed. Twenty one compounds were contained in both 
the training set and ToxCast. They were used for assessing 
the concordance between the ERβ binding assays in EADB 
and the high-throughput screening ERβ dimerization 
assays in ToxCast. After removed the 21 compounds, the 
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remaining compounds and their ERβ dimerization assay 
data [39] from ToxCast were used as the application data 
sets for estimating the extrapolation capability of the 
ERβ binding activity prediction model. Among the 1812 
compounds that were not included in the training set, 17 
and 12 compounds were reported as not determined in 
OT_ER_ERβERβ_0480 and OT_ER_ERβERβ_1440 assays, 
respectively. The compounds in the application data sets 
were classified as active if their AC50 values are recorded 
in the ToxCast database; otherwise they were determined 
as inactive. Finally, 1805 (175 binders and 1630 non-
binders) compounds for OT_ER_ERβERβ_0480 and 1800 
(150 binders and 1650 non-binders) compounds for OT_
ER_ERβERβ_1440 were used in the application data sets.

Mold2: Descriptor generation

Mold2 (http://www.fda.gov/ScienceResearch/
BioinformaticsTools/Mold2) software [30] was used to 
generate molecular descriptors for the compounds in the 
training and application sets. Compounds in the SDF files 
were input into Mold2. Totally, 777 molecular descriptors 
were generated for each compound. Mold2 generates one-
dimensional (e.g., molecular weight) and two dimensional 
(e.g., structural and bond information) descriptors. The 
generated molecular descriptors were pre-processed to 
remove the less informative descriptors (i.e., the same 
value for most of the chemicals in the training set). Out of 
777 molecular descriptors, 330 descriptors are removed as 
they were considered as less informative (Supplementary 
Figure 2). Finally, 447 descriptors were subjected to the 
DF algorithm to generate the ERβ predictive model.

DF

DF is a powerful algorithm that combines multiple 
decision tree models to generate a consensus predictive 
model with high accuracy [23–25]. Each decision tree model 
is generated using a different set of molecular descriptors. 
The algorithm of DF consists of four steps. Initially, it 
constructs an individual decision tree using a pool of 
molecular descriptors; the molecular descriptors used in the 
previously generated decision tree model are then removed 
from the pool of molecular descriptors; the above two steps 
are repeated until no improvement can be achieved by adding 
more decision tree models; and finally, it combines all the 
decision tree models to make a final predictive model. DF 
is different from the Random Forests algorithm [40]. DF 
uses less decision trees that are constructed using all samples 
and variables. Therefore the trees are deep and accurate. 
In contract, Random Forests combines a large number of 
decision trees that are built using part of samples through 
bootstrapping and a small fraction of variables randomly 
selected. Thus, the trees are shallow and not accurate. The 
diversity of decision trees that is achieved by using different 
variables is the key to DF, while Random Forests ensures 

contributions of independent variables by randomization that 
requires a large number of such shallow trees.

Performance metrics

The performance of the ERβ predictive model can 
be measured using different metrics. Prediction accuracy, 
sensitivity, selectivity, Matthews’s correlation coefficient 
(MCC), and balanced accuracy were used in this study. 
The above mentioned metrics are computed using the 
following equations:

Accuracy
TP TN

TP TN FP FN
=

+
+ + +

Sensitivity
TP

TP FN
=

+

Specificity
TN

TP FN
=

+

MCC
TP*TN FP*FN

TP FP TP FN TN FP (TN FN)( )( )( )
=

−

+ + + +

Balanced accuracy = (Sensitivity + Specificity) / 2
In the above equations, TP indicates true positives 

(number of actual binders are predicted as binders); TN 
represents true negatives (number of actual non-binders 
are predicted as non-binders); FP means false positives 
(number of actual non-binders are predicted as binders); 
and FN is false negatives (number of actual binders are 
predicted as non-binders).

Cross validation

Five-fold (5-fold) cross validations were used to 
evaluate the performance of ERβ predictive models. In 
a 5-fold cross validation, the training set was randomly 
divided into five equal subsets. Four subsets were used to 
generate a DF model and the remaining one subset was 
used to test the generated DF model. This process was 
repeated for each of the five subsets once and only once. 
The prediction results from the five subsets were then 
average to assess the prediction performance of the five 
DF models. To avoid possible chance correlation in the 
random division of a data set into five subsets, the 5-fold 
validation was repeated for 1000 times using different 
random divisions to reach a statistically reliable validation.

Permutation test

Permutation tests were used to estimate the 
predictive power of the generated models. In a permutation 
test, the ERβ binding activity data in the training data 
set were randomly scrambled to generate a permuted 
data set. A 5-fold cross validation test was performed 
on the permuted data set. The accuracy, specificity, 
and sensitivity of the 5-fold cross validation test were 
calculated to measure the chance correlation. To reach a 
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statistically reliable estimation, this process was repeated 
for 1000 times to generate the 1000 permuted data sets for 
running 5-fold cross validations.

Prediction confidence analysis

Prediction confidence analysis was carried out 
not only to classify the compounds as ERβ binder and 
non-binder but also to estimate the probability of the 
compounds to be an ERβ binder or non-binder. Hence, 
the models were assessed based on not only the overall 
prediction performance but also the relationship between 
the prediction confidence levels and their performance. 
The prediction confidence value was calculated using the 
below equation.

Confidence 
P 0.5

0.5
=

−

Where P represents the probability of a chemical 
being an ERβ binder (0.5 <= P <=1) or non-binder (0 
< P < 0.5). Prediction confidence is a value between 0 
and 1. The larger the prediction confidence is, the more 
confident the prediction is. To conduct confidence 
analysis, the prediction confidence was calculated for each 
of the predictions from the 1000 iterations of 5-fold cross 
validations at first. The predictions were then put into 10 
even bins based on their prediction confidence values. 
Prediction performance metrics were finally calculated 
for the predictions in each of the prediction confidence 
bins according to their actual and predicted ERβ binding 
activity.

Identification of informative descriptors

The importance of molecular descriptors in ERβ 
binding was estimated based on the frequency distribution 
of the descriptors used in the models in the 5-fold cross 
validations. A frequency value in the models from 5-fold 
cross validations was calculated for each of the molecular 
descriptors. The molecular descriptors were then ranked 
based on their frequency values. The descriptors that were 
used in more than 90% of the models were finally selected 
as the informative descriptors for the ERβ models.

Concordance between EADB and ToxCast

The two ERβ dimerization assays from ToxCast 
reported the estrogenic activity for >1800 compounds. 
Among the >1800 compounds, 21 had ERβ binding data in 
EADB. The ERβ binding data in EADB and the estrogenic 
activity data from high-throughput screening assays in 
ToxCast (Supplementary Table 3) were compared for 
the 21 common compounds to assess the correlation 
between the two types of assays (traditional and high-
throughput screening assays). This analysis could help to 
understand how well the ERβ binding predictive model 
would be applied to data from different assays. The 

balanced accuracy was calculate for the two different 
ERβ dimerization assays in ToxCast relative to EADB, 
where EADB was used as a primary metrics to measure 
the activity data agreement between EADB and ToxCast 
assays.

Applications

The application data sets were used to assess the 
goodness of the ERβ binding activity prediction model 
in extrapolation to predicting chemicals for their high-
throughput screening ERβ dimerization assays activity. The 
application data sets contain 1805 and 1800 compounds 
for OT_ER_ERβERβ_0480 and OT_ER_ERβERβ_1440 
ERβ dimerization assays from ToxCast. The constructed 
ERβ binding activity predictive model was used to predict 
ERβ binders and non-binders for the chemicals in the 
application data sets. The accuracy, sensitive, selectivity, 
and balanced accuracy were calculated to assess the 
goodness of the ERβ binding activity predictive model, 
when the model was extrapolated to predicting outcome 
from high-throughput screening ERβ dimerization assays.

Disclaimer

The views expressed in this manuscript do not 
necessarily represent those of the U.S. Food and Drug 
Administration.

CONCLUSIONS

The ERβ predictive model was developed and cross 
validated using a large data set from EADB. The cross 
validations demonstrated the predictive power of the ERβ 
predictive model. The prediction confidence provides an 
additional metric for application of the ERβ predictive 
model. The important molecular descriptors linked to 
the knowledge of ligand binding to ER were identified. 
Applications of the developed model to ERβ dimerization 
assays data in ToxCast demonstrated the capability 
of extrapolation to other ERβ related endpoints data. 
Combination of the model developed in this study with 
our previous ERα binding activity prediction model could 
help to design or identify the selective compounds for ERβ 
and ERα which would be crucial in drug discovery and 
safety evaluation.
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