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Identification and Optimization of Classifier Genes from
Multi-Class Earthworm Microarray Dataset
Ying Li1, Nan Wang1, Edward J. Perkins2, Chaoyang Zhang1, Ping Gong3*

1 School of Computing, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America, 2 Environmental Laboratory, U.S. Army Engineer Research

and Development Center, Vicksburg, Mississippi, United States of America, 3 Environmental Services, SpecPro Inc., Vicksburg, Mississippi, United States of America

Abstract

Monitoring, assessment and prediction of environmental risks that chemicals pose demand rapid and accurate diagnostic
assays. A variety of toxicological effects have been associated with explosive compounds TNT and RDX. One important goal
of microarray experiments is to discover novel biomarkers for toxicity evaluation. We have developed an earthworm
microarray containing 15,208 unique oligo probes and have used it to profile gene expression in 248 earthworms exposed
to TNT, RDX or neither. We assembled a new machine learning pipeline consisting of several well-established feature
filtering/selection and classification techniques to analyze the 248-array dataset in order to construct classifier models that
can separate earthworm samples into three groups: control, TNT-treated, and RDX-treated. First, a total of 869 genes
differentially expressed in response to TNT or RDX exposure were identified using a univariate statistical algorithm of class
comparison. Then, decision tree-based algorithms were applied to select a subset of 354 classifier genes, which were ranked
by their overall weight of significance. A multiclass support vector machine (MC-SVM) method and an unsupervised K-mean
clustering method were applied to independently refine the classifier, producing a smaller subset of 39 and 30 classifier
genes, separately, with 11 common genes being potential biomarkers. The combined 58 genes were considered the refined
subset and used to build MC-SVM and clustering models with classification accuracy of 83.5% and 56.9%, respectively. This
study demonstrates that the machine learning approach can be used to identify and optimize a small subset of classifier/
biomarker genes from high dimensional datasets and generate classification models of acceptable precision for multiple
classes.
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Introduction

DNA microarray, a maturing genomic technology, has been

used extensively as a diagnostic tool to complement traditional

approaches such as histopathological examination for various

diseases (particularly cancers) because microscopic appearances

sometimes can be deceiving [1–4]. Microarrays have also

successfully served as a research tool in discovering novel drug

targets [5] and disease- or toxicity-related biomarker genes for

cancer classification [6]. In ecological risk assessment, indigenous

species such as fish and earthworms are often used as bioindicators

for adverse effects caused by environmental contaminants.

Previously, we developed an earthworm (Eisenia fetida) cDNA

microarray to analyze toxicological mechanisms for two military-

unique explosive compounds 2,4,6-trinitrotolune (TNT) and 1,3,5-

trinitro-1,3,5-triazacyclohexane (also known as Royal Demolition

eXplosive or RDX) [7,8]. These two compounds exhibit

distinctive toxicological properties that are accompanied by

significantly different gene expression profiles in the earthworm

E. fetida [7–9], which has motivated us to look further into

toxicant- or toxicity-specific signature genes/biomarkers. The

second motivation comes from the fact that many diagnostic assays

exist for human diseases while very few are available for evaluating

impacts on environmentally-relevant organisms. Gross survival,

growth and reproduction rates are often used as assessment

endpoints without reflecting the diseased population of affected

animals that is an important part of long-term impact assessment.

The last motivation is that computational tools such as machine

learning techniques have been widely used in cancer and toxicant

classification with microarray data but rarely applied in micro-

array data analysis of environmentally relevant organisms [10–12].

From a regulatory standpoint, there is an increasing and

continuous demand for more rapid, more accurate and more

predictive assays due to the already large, but still growing,

number of man-made chemicals released into the environment

[13]. Molecular endpoints such as gene expression that may reflect

phenotypic disease symptoms manifested later at higher biological

levels (e.g., cell, tissue, organ, or organism) are potentially

biomarkers that meet such demands. As a high throughput tool,

microarrays simultaneously measure thousands of biologically-

relevant endpoints (gene expression). However, to apply this tool

to animals under field conditions, one critical hurdle to overcome

is the separation of toxicity-induced signals from background noise

associated with environmental variation and other confounding
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factors such as animal age, genetic make-up, physiological state

and exposure length and route [10,11]. A common approach to

biomarker discovery is to screen genome- or transcriptome-wide

gene expression responses and identify a small subset of genes

capable of discriminating animals that received different treat-

ments, or predicting the class of unknown samples. It is relatively

less challenging to identify differentially expressed genes from two

or more classes of samples. However, the search for an optimal

and small subset of genes that has a high discriminatory power in

classifying field samples often having multiple classes is much more

complicated.

For instance, Falciani and colleagues profiled gene expression of

77 hepatic samples of European flounder (Platichthys flesus) collected

from six different environmental sites [10]. Using a multivariate

variable selection coupled with a statistical modelling procedure

they demonstrated that the accuracy of predicting the geograph-

ical site of origin based on gene expression signatures in flounder

livers was limited to specific sites. After incorporating prior

knowledge and data from laboratory exposures to individual

toxicants, they were able to limit the search space for a

combination of effective classifier genes and built a very accurate

model consisting of only 17 genes for classification of all the

different environmental sites. Similarly, Nota and co-workers

recently identified a set of 188 genes from expression profiles of the

springtail (Folsomia candida) exposed to a soil spiked with six

different metals using the uncorrelated shrunken centroid method,

and predicted an independent test soils set with an accuracy of

83% but failed on field soils collected from two cobalt-

contaminated sites using this gene set [11]. Several other studies

also reported a varying degree of success in the identification of

classifier genes in both aquatic species like the zebrafish (Danio rerio)

[12], the common carp Cyprinus carpio [14] and the water flea

Daphnia magna [15], and terrestrial organisms such as the

earthworm Lumbricus rubellus [16].

As part of a larger effort towards discovering novel biomarkers

for ecological risk assessment of military lands, we have developed

a 15208-oligonucleotide E. fetida array, and generated a large-scale

microarray dataset from a laboratory study where earthworms (E.

fetida) were exposed to various concentrations of TNT or RDX for

various lengths of time in soil, mimicking field exposure scenarios.

The objective of the current study was to identify a small set of

classifier genes that could be used to build a predictive model

capable of accurately separating all exposed earthworm samples

into three categories: control, TNT-treated and RDX-treated. We

focused on identifying and optimizing classifier genes from the

earthworm dataset using a machine learning approach.

Materials and Methods

Experimental design and dataset generation
Adult earthworms (E. fetida) were exposed in a field collected

pristine silty loam soil (3% sand, 72% silt, 26% clay, pH 6.7, total

organic C 0.7%, and CEC 10.8 mEq/100 g) spiked with TNT (0,

6, 12, 24, 48, or 96 mg/kg) or RDX (8, 16, 32, 64, or 128 mg/kg)

for 4 or 14 days. The 4-day treatment was repeated a second time

with the same TNT concentrations, however RDX concentrations

were 2, 4, 8, 16 or 32 mg/kg soil. Each treatment originally had 10

replicate worms with 8,10 survivors at the end of exposure, except

the two highest TNT concentrations. At 96 mg TNT/kg, no worms

survived in the original 4-day and 14-day exposures, whereas at

48 mg TNT/kg, all 10 worms died in the original 4-day exposure.

Total RNA was isolated from the surviving worms as well as the Day

0 worms (worms sampled immediately before experiments). A total

of 248 worm RNA samples ( = 8 replicate worms631 treatments)

were hybridized to a custom-designed oligo array using Agilent’s

one-colour Low RNA Input Linear Amplification Kit. The array

contained 15,208 non-redundant 60-mer probes (GEO platform

accession number GPL9420), each targeting a unique E. fetida

transcript [17]. After hybridization and scanning, gene expression

data were acquired using Agilent’s Feature Extraction Software

(v.9.1.3). In the current study, the 248-array dataset was divided into

three worm groups regardless of exposure length and concentraiton:

32 untreated controls, 96 TNT-treated, and 120 RDX-treated. This

MIAME compliant dataset has been deposited in NCBI’s Gene

Expression Omnibus [18] and is accessible through GEO Series

accession number GSE18495 (http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc = GSE18495).

Integrated Statistical and Machine Learning (ISML)
approach

A challenge in classifying or predicting the diagnostic categories

using microarray data is the curse of dimensionality problem

coupled with sparse sampling. That is, the number of examined

genes per sample is much greater than the number of samples that

are involved in classification [19]. The other crucial challenge is

that the huge search space for an optimal combination of classifier

genes renders high computational expenses [20]. To address these

two issues, we developed the new ISML pipeline, which integrates

statistical analysis with supervised and unsupervised machine

learning techniques (Fig. 1). The pipeline consists of four major

components: (1) statistical analysis that reduces dimensionality

through identification of the most differentially expressed genes; (2)

tree-based algorithms that are used to further downsize the

number of classifier genes with assigned weight and associated

ranking; (3) MC-SVM and unsupervised clustering, each of which

independently selects an optimal set of classifier genes using an

iterative elimination process (see Optimization of classifier
genes by MC-SVM below for details); and (4) the integration of

the two independent gene sets to generate a final refined gene sets.

Data pre-processing
The following data pre-treatment steps were applied prior to

further statistical and computational analyses: (1) feature filtering:

flag out spots with signal intensity outside the linear range as well

as non-uniform spots; (2) conversion: convert signal intensity into

relative RNA concentration based on the linear standard curve of

spike-in RNAs; (3) normalization: normalize the relative RNA

concentration to the median value on each array; and (4) gene

filtering: filter out genes appearing in less than 50% of arrays (i.e.,

present on at least 124 arrays). There were more than 14,000

genes remaining after this procedure.

Feature filtering by univariate statistical analysis
The Class Comparison Between Groups of Arrays Tool in BRB-

ArrayTools v.3.8 software package ([21]; linus.nci.nih.gov/BRB-

ArrayTools.html) was used to identify significantly changed genes.

The collated earthworm array dataset was imported without any

further normalization or transformation. The tool runs a random

variance version of the t-test or F-test separately for each gene. It

performs random permutations of the class labels and computes the

proportion of the random permutations that give as many genes

significant at the level set by the user as are found in comparing the

true class labels. The following eight class-comparison analyses were

conducted to infer genes differentially expressed in response to TNT

or RDX: (1) two 2-class comparisons: pooled controls vs. pooled

TNT or RDX treatments; and (2) six multiple-class comparisons: 4-

day TNT or RDX multiple concentrations, 4-day repeat TNT or

Inference of Classifier Genes
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RDX multiple concentrations, and 14-day TNT or RDX multiple

concentrations. The following settings were employed: a univariate

test random variance model, multivariate permutation tests with

10,000 random permutations, a confidence level of false discovery

rate assessment = 99%, and a maximum allowed number of false-

positive genes = 10.

Classifier gene selection by tree-based algorithms
Seven decision tree methods (SimpleCart, BFTree, FT, J48,

LADTree, LMT and REPTree) were used for gene selection to

avoid the biases and overcome limitations of each single algorithm

[22,23]. An ensemble strategy was also applied to increase

prediction accuracy using bagging (Bagging) and boosting

(AdaBoostM1) [24]. All of these algorithms are implemented in

the WEKA machine learning workbench v.3.6.0 ([25]; www.cs.

waikato.ac.nz/ml/weka/). The resulting tree structure each

generated a set of classifier genes. The performance of a classifier

was evaluated using three criteria: accuracy (see below for

definition), precision (or sensitivity = number of correctly classified

samples/total number of samples classified into this class), and the

area under the ROC (Receiver Operating Characteristic) curve.

Ranking classifier genes by weight of significance
A weight of significance was assigned on a scale between 0 and 1

to every selected classifier gene based on its position/significance

in an assembled decision tree according to Equation (1):

wt gð Þ~ max
p[P

lp
� � 1

p max
ð1Þ

where wt gð Þ is the weight of gene g assigned by a tree model t,
p max is the longest path of the tree, and lp is the height of the

gene in path p. A ‘‘root’’ gene was awarded the largest weight

whereas a ‘‘leaf’’ gene the smallest. The weight value was

normalized to the longest leaf-to-root path, except for those genes

selected by the LMT algorithm, whose weight had already been

assigned by a logistic model. The overall weight for a classifier

gene, i.e., the sum of its weight assigned in all the decision tree

methods, was calculated as follows:

W gð Þ~
XN

t~1

Atwt gð Þ ð2Þ

where W gð Þ is the overall weight of gene g, At is the accuracy of

tree model t, and N is the total number of tree models. All of the

classifier genes were ranked by their overall weight, i.e., the larger

the weight it had, the higher it ranked.

Optimization of classifier genes by MC-SVM
Sequential minimum optimization (SMO), a fast algorithm for

training SVM [26,27], was used to build MC-SVM kernel

function models, as implemented in WEKA. We designed the

following steps to refine the classifier gene set:

(1) start with the highest ranking classifier gene to train the SVM

using the training dataset and classify the testing dataset using

the trained SVM;

(2) add one gene of immediately lower ranking in overall weight

at a time to constitute a new gene set, and use the gene set to

train and predict the samples; repeat this step until all the

classifier genes have been included;

(3) calculate the classification accuracy of each class (control,

TNT and RDX) and the weighted average accuracy of all

three classes for each set of genes using results from the testing

dataset;

(4) estimate the improvement or decline in classification accuracy

as a result of adding one gene for each of the three classes plus

the weighted average accuracy of all three classes;

(5) remove any gene(s) starting from the one ranking at the

bottom that causes a decline in ALL four classification

accuracies;

(6) iterate steps 1,5 until no more gene(s) can be removed. The

remaining set of genes is considered the refined classifier gene

set because of its small gene size and high accuracy.

Optimization of classifier genes by clustering
Because both tree-based algorithms and SVM are supervised

machine learning methods, an unsupervised clustering method

Figure 1. Overview of the integrated statistical and machine
learning (ISML) pipeline. The pipeline illustrates the analytical
procedure that integrates statistical analysis with supervised machine
learning and unsupervised clustering as described in Materials and
Methods. Numbers in brackets indicate the amount of genes
remaining (also see Results).

Inference of Classifier Genes
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was used to independently optimize the classifier genes. Clustering

was performed using the K-mean clustering analysis as imple-

mented in the WEKA toolbox. All the dendrogram trees were cut

at a level so that all the 248 earthworm RNA samples were

grouped into three clusters. The three pre-labelled clusters

(control, RDX and TNT) served as the reference, and the three

clusters derived from the dendrogram trees were compared to the

reference clusters to determine matching sample numbers. The

optimization of classifier genes by clustering followed the same

iterative steps as described above for MC-SVM.

Estimation of classification accuracy
Accuracy (also called true positive rate or recall) of a classifier

was defined as the percentage of the dataset correctly classified by

the method, i.e., number of correctly classified samples/total

number of samples in the class. Due to the use of the whole dataset

in feature selection, ten-fold stratified cross-validation with inner

and outer loops was performed as described in [28] throughout

this study to avoid sample selection bias and obtain unbiased

estimates of prediction accuracies [29].

Results

Feature filtering by univariate statistical analysis
Differentially expressed genes were inferred by univariate

statistical analysis. At the same level of statistical stringency, the

significant gene lists derived from four different comparisons for

either TNT or RDX shared very few common genes (Fig. 2),

suggesting different genes may be significantly altered under

different conditions. To validate these results, we used ANOVA

in GeneSpring GX 10 to analyze the same dataset by applying the

Benjamini-Hochberg method for multiple testing corrections and a

cut-off of 1.5-fold change. By allowing a variable threshold of cut-off

p-value, the same amount of top significant genes can be derived

from the same comparisons as we did using BRB-ArrayTools. The

two sets of significant gene lists share 85,95% common genes (data

not shown), indicating a high level of statistical reproducibility. The

difference in the resulting gene lists may be primarily attributed to

the use of a 1.5-fold change as the cut-off level by GeneSpring. A

total of 869 unique genes were obtained after combining all

significantly changed gene lists from TNT- and RDX-exposures.

The expression information of these 869 transcripts in all 248

earthworm samples is provided in Table S1.

Classifier genes identified by tree-based algorithms
We used seven different tree-based machine learning algorithms

to select classifier genes from the 869 statistically significant genes.

Each algorithm in combination with bagging or boosting

generated decision trees, separating earthworm samples into three

pre-defined classes based on the expression of classifier genes. A

different set of classifier genes was selected by each algorithm

(Table 1). The classification accuracy varied from 75.0% for

SimpleCart with boosting to 84.7% for LMT with bagging. There

is a significant correlation between ROC area and accuracy

(correlation coefficient = 0.94).

A total of 354 unique classifier genes were obtained after

pooling classifier genes from all decision trees. Each classifier gene

was then ranked by an overall weight of significance. The

distribution and histogram of overall weights of these genes are

shown in Fig. 3. The overall weight of 127 (or 36%) of classifier

genes are below 0.1 (Fig. 3a). Only the top 43 or 14 genes had an

overall weight larger than 0.5 or 1.0 (Fig. 3b), respectively.

Functional annotations of the 354 genes are provided in Table S2.

Over 90% of these genes have one or more strings of annotation

information obtained using such bioinformatics programs as

BLASTX, BLASTN, InterProScan and PIPA [30].

Refinement of the classifier gene set using MC-SVM or
clustering

Two different algorithms, SMO and K-mean clustering, were

employed to optimize the number and set of genes from the 354

ranked classifier genes. Composition of the classifier gene set had a

significant influence on classification accuracy (Fig. 4). Using

SMO, as few as 16 top ranked genes classified 81% of the 248

samples into correct classes (Fig. 4a). Starting at the 250th gene, the

inclusion of additional classifier genes not only did not improve the

classification accuracy for the TNT and the RDX classes as well as

the weighted average accuracy, but deteriorated the accuracy for

the control class (Fig. 4a). Similarly, with the clustering approach,

the top ranked 31 genes correctly clustered 66% of the samples,

while addition of other genes did little, if any, to improve the

accuracy of either individual classes or the weighted average

Figure 2. The number and overlapping of significant genes statistically inferred from class comparisons for (a) TNT and (b) RDX
treatments. TNT/RDX-Control: two-class comparison between pooled controls and pooled TNT/RDX treatments; TNT/RDX-D4orig: multiple-class
comparison of 4-day TNT/RDX treatments including the control group; TNT/RDX-D4Rpt: multiple-class comparison of 4-day repeat TNT/RDX
treatments including the control group; TNT/RDX-D14: multiple-class comparison of 14-day TNT/RDX treatments including the control group (also
see Materials and Methods).
doi:10.1371/journal.pone.0013715.g002

Inference of Classifier Genes
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(Fig. 4b). Clearly, individual classifier genes vary remarkably in its

contribution to the change of classification accuracy, which also

depends on the choice of machine learning algorithms. The

iterative optimization process effectively removed many genes that

made no or negative contribution to the classification perfor-

mance. As a result, this process produced a SVM- and a

clustering-optimized subset consisting of 39 and 30 genes,

respectively (Fig. 5).

The first 24 genes of the SVM-optimized subset clearly played

more important roles than the remaining 15 genes that only

slightly improved the accuracy for the control class and changed

very little the accuracy for the TNT and the RDX classes (Fig. 5a).

The subset of 39 genes performed well in terms of accuracy, ROC

area, and precision, with 83,91% in accuracy and precision

except for the 76% precision of the control class (Table 2). The

case for the clustering-optimized subset is a bit perplexing as the

accuracy of the control and the RDX classes changed in opposite

directions after adding the 2nd, 5th, 7th, 9th, 11th and 13th genes

(Fig. 5b). Nevertheless, the whole subset of 30 genes evened up the

accuracy for all classes (Fig. 5b and Table 3) and gave an average

of 72.5% precision for the three classes (Table 3). The sensitivity

for the control class was relatively lower, especially in classification

by clustering, when compared with that for the other two classes.

An examination of the samples that were incorrectly clustered into

the control class showed that they were mostly exposed for 4 days

to the lowest three concentrations of RDX or TNT (data not

shown). A plausible reason for this misclassification is that gene

expression in these samples may not be significantly different from

that in the controls due to low levels of contaminant. The uneven

sample size might explain why the SVM precision for the control

class (32 samples) is relatively lower than that for the other two

classes (96 and 120).

Optimized gene subset for classification
The two subsets of classifier genes optimized by SVM and

clustering share 11 common genes, and the combination of these

two resulted in a set of 58 unique genes that represents a refined

gene set for the three-class classification. Using this gene set, we

were able to build a SVM model with high performance

parameters including accuracy, sensitivity and ROC area

(Table 4). The classification results for both supervised SVM

and unsupervised clustering are slightly less superior with the

58-gene set (Table 4) than with the 39- or the 30-gene set

(Tables 2 and 3). As summarized in Table S3, 38 genes or 65.5%

of the optimal gene set are among the 70 highest ranked classifier

genes, 15 or 75% of the top 20 ranked genes are included in the

optimal gene set, and 7 or 63.6% of the 11 genes picked by both

SVM and clustering come from the top 12 ranked classifiers.

These results reinforce the merit of our weight-of-significance

ranking system.

Discussion

Microarray datasets possess an exceptionally high complexity

distinguished by high feature dimension and low sample size. Like

other microarray studies, the primary objective of this study was to

search for an optimal or near optimal subset of genes that could be

used to predict the exposure history of unknown samples. It has

been proven in both theory and practice that feature selection can

Table 1. Summary of classification results using the tree-
based classification algorithmsa.

Ensemble method Tree-based algorithm Accuracy (%) ROC area

Boosting BFTree 75.8 0.878

Boosting J48 79.8 0.882

Boosting LADTree 77.4 0.881

Boosting SimpleCart 75.0 0.868

Boosting FT 83.5 0.930

Boosting LMT 81.8 0.936

Bagging J48 75.4 0.868

Bagging LADTree 75.0 0.876

Bagging REPTree 75.0 0.870

Bagging SimpleCart 76.2 0.855

Bagging FT 82.7 0.937

Bagging LMT 84.7 0.944

aA total of 354 unique classifier genes were identified.
doi:10.1371/journal.pone.0013715.t001

Figure 3. The accumulative distribution (a) and histogram (b) of the overall weight of the 354 selected classifier genes. In the
histogram, the bin size is set at 0.05, and three genes with the highest overall weight of 2.81, 6.38 and 8.70, respectively, are not shown.
doi:10.1371/journal.pone.0013715.g003

Inference of Classifier Genes
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effectively enhance learning efficiency, increase predictive accura-

cy, reduce complexity of learned results, and improve the accuracy

of classification models [6,31,32]. Although numerous supervised

or unsupervised machine learning techniques have been used for

feature selection and sample classification of microarray data (for

reviews see [33–35]), classification performance appears to depend

strongly on the dataset and less on the variable selection and

classification methods [36]. Meanwhile, it has been demonstrated

that a combined use of different classification and feature selection

approaches can enhance confidence in selecting relevant genes

[6,35] and that ensemble methods such as bagging and boosting

can improve classification performances [24]. These two strategies

are both reflected in our ISML pipeline (Fig. 1, Table 1).

We first used the univariate statistical analysis [37] that selected

869 features/genes. These genes may represent a wide variety of

transcripts that responded not only to toxicants TNT or RDX, but

also likely to other environmental stresses. To further down select

the features, we employed several decision-tree algorithms. A

decision tree is constructed by selecting the most discriminative

features/nodes for classification [35] and biomarker genes

discovery [22] from microarray data. In a decision tree, the

occurrence of a node (feature/gene) provides the information

about the importance of the associated feature/gene [22]. The

root gene has the most information gain for classification, and the

other nodes genes appear in descending order of power in

discrimination [38]. During the decision learning, the genes that

have no discrimination capability are discarded. A total of 515

genes were eliminated from the 869 differentially expressed genes

by tree-based algorithms, leaving 354 classifier genes. This

represents a 59% feature reduction.

As our goal was to scale down the size of potential classifier gene

set while maintaining a high discriminative power, we introduced

Figure 4. Classification accuracy of 248 earthworm samples using SVM (a) or clustering (b) with an increasing number of top ranked
classifier genes. The weighted average accuracy and the accuracy for each of the three classes (control, RDX and TNT) are shown for each set of
genes (1,354 genes). Genes were added to the increasing gene set one at a time in the order of decreasing overall weight (see also Figure 3(a)).
doi:10.1371/journal.pone.0013715.g004

Figure 5. Classification accuracy of the 248 earthworm samples using an increasing number of classifier genes optimized by SVM
(a) or clustering (b). The weighted average accuracy and the accuracy for each of the three classes (control, RDX and TNT) are shown for each set of
genes (1,39 genes in 5(a) or 1,30 genes in 5(b)). One gene (the next highest ranked gene) at a time was added to the previous gene set to generate
a new gene set (see also Figure 3(a)).
doi:10.1371/journal.pone.0013715.g005

Inference of Classifier Genes
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in the ISML pipeline a new algorithm to compute and rank the

overall weight of the 354 individual classifier genes based on their

contribution/significance to classification. We also developed a

novel optimization algorithm for iteratively removing classifier

genes that had little or a negative impact on classification

performance. This bottom-up removal process began with the

least important gene having the lowest overall weight. We

chose to eliminate those genes that only reduced the classification

accuracies of all classes as well as the weighted average. This

conservative approach was adopted to preserve genes that might

increase the accuracy of one class but decrease that of another,

like the 2nd, 5th, 7th, 9th, 11th and 13th genes in the clustering-

optimized gene set (Fig. 5b). These genes are usually important

for discriminating one particular class while confounding other

classes.

SVMs are powerful classification models that have shown

state-of-the-art performance on several diagnosis and prognosis

tasks on biological data [24,39]. SVM-based classification can

usually achieve higher accuracy/precision on a given dataset

than unsupervised algorithms. Ideally, an SVM analysis should

produce a hyperplane that completely separates the feature vectors

into non-overlapping groups. However, perfect separation may

not be possible, or it may result in a model with so many feature

vector dimensions that the model does not generalize well to

other data, which is a problem commonly known as over-

fitting [40]. The risk of over-fitting to the specific dataset in

Table 2. Confusion matrix showing classification results for testing datasets obtained by MC-SVM using the optimized set of 39
classifier genes.

True class (no. samples) No. samples classified as Accuracy (%) ROC area

Control RDX TNT

Control (32) 29 2 1 90.6 0.938

RDX (120) 7 106 7 88.3 0.887

TNT (96) 2 14 80 83.3 0.913

Precision (%) 76.3 86.9 90.9

Weighted average (248) 87.1 (precision) 86.7 0.904

doi:10.1371/journal.pone.0013715.t002

Table 3. Confusion matrix showing classification results
obtained by clusteringa.

True class (no. samples) No. samples classified as Accuracy (%)

Control RDX TNT

Control (32) 22 1 9 68.8

RDX (120) 46 56 18 46.7

TNT (96) 21 8 67 69.8

Precision (%) 24.7 86.2 71.3

Weighted average (248) 72.5 (precision) 58.5

aThe optimized set of 30 classifier genes were used. ROC area was not
computable for clustering.

doi:10.1371/journal.pone.0013715.t003

Table 4. Confusion matrix of classification results obtained using the refined set of 58 classifier genes combined from the SVM-
and the clustering-optimized gene sets.

True class (no. samples) No. samples classified as Accuracy (%) ROC area

Control RDX TNT

SVM

Control (32) 26 6 0 81.3 0.936

RDX (120) 9 100 11 83.3 0.856

TNT (96) 2 13 81 84.4 0.913

Precision (%) 70.3 84.0 88.0

Weighted average (248) 83.8 (precision) 83.5 0.904

Clusteringa

Control (32) 22 1 9 68.8 NA

RDX (120) 48 55 17 45.8 NA

TNT (96) 22 10 64 66.7 NA

Precision (%) 23.9 83.3 71.1

Weighted average (248) 70.9 (precision) 56.9 NA

aROC area was not computable with clustering.
doi:10.1371/journal.pone.0013715.t004
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compensation for high accuracy/precision may render a high

probability of misclassification when the trained SVM model is

applied to predict unknown samples of other independent datasets.

Unlike SVM, unsupervised learning algorithms can overcome this

shortfall with a trade-off of less superior accuracy/precision. Our

ISML pipeline adopted a compromise between these two

approaches. Although the effectiveness, efficiency and superiority

of this approach has to go through more stringent validation and

testing, our results indicate that the final combined gene set

produced nearly as good classification outcome as the two

separately optimized gene subsets. This combined gene set need

to be tested in field samples where exposure history including

species and concentration of contaminants as well as exposure

length is often unknown. Currently, a field soil study is undertaken

to validate this optimal gene set, where lab-cultured mature

earthworms are exposed in field soils primarily contaminated with

TNT or RDX.

Classification accuracy was evaluated in this study on a sole

basis of the pre-defined exposure history, that is, each sample

was labelled with a priori class corresponding to the chemical it had

been exposed to, disregarding the differences in soil concen-

tration of TNT or RDX. The accuracy of biological classifi-

cation can be impaired for soils containing low toxicant

concentrations which may not induce gene expression effects

significant enough to distinguish exposed animals from the

controls. This might contribute partly to the lower accuracy

obtained from clustering than from SVM. It is desirable to define a

threshold such as the lowest observable effect concentration

expressed as the toxicant concentration in soil or animals (body

burden). We prefer body burden as an exposure measure over soil

concentration due to the often heterogeneous distribution of

toxicants in soil. This way, animals with a tissue concentration

below the threshold can be grouped/pre-defined together with

unexposed control animals, which potentially benefits clustering

more than SVM.

To define a sensitive threshold, one can measure disease-related

biological endpoints that are presumably more sensitive than the

mortality and growth endpoints in short-term exposures of 4 or 14

days. Alternatively, one can measure toxicity-related phenotypic

(e.g., biochemical, physiological, or pathological) endpoints if a

more toxicological meaningful discrimination is desired. The SVM

classification model for exposure classification in the output of the

ISML pipeline can be conveniently converted into a disease or

toxicity diagnosis model.

Another confounding factor that affects classification accuracy is

that vulnerability and susceptibility vary from one animal to

another, which may be caused by many factors such as genetic

make-up, age, and physiological status. We believe that the

diagnosis or prediction accuracy of unknown samples can be

greatly improved if gene expression profiles of biologically well-

characterized, pre-defined animals are used as the training dataset,

just like in cancer microarray studies.

Among the 58 optimized genes, 93% genes exhibited toxicant-

specific gene expression alterations, that is, 32 genes responded

specifically to TNT, 22 to RDX, and only 4 to both chemicals

(Table S3). Forty-two genes (72%) have meaningful annotation

with a wide range of biological functions spanning from

antioxidant response (COX4 and NADH-coenzyme Q reductase)

to spermatogenesis (evcp-2) and GABA receptor modulator (DBI,

also known as Acyl-CoA-binding protein or ACBP). Three of the

top 10 ranked genes, PTB, DBI and SOD, have previously been

shown being altered by TNT [7] or RDX [8]. Two probes

targeting two highly similar transcripts coding for evcp-2, a gene

expressed specifically in the anterior segments of sexually mature

earthworms [41], take the 10th and the 28th positions on the

optimal gene list, suggesting that both TNT and RDX may affect

spermatogenesis. On the list, there are also several stress-

responding genes such as HSP70 (#13 & #41) [42] as well as

cancer-related genes such as TCTP (#57) [43]. It is worth noting

that six genes, PTB (#1) [44], DDX46 (#3) [45], EF2 (#15 &

#34) [46], hnRNP K (#16) [47], and eRF1 (# 26) [48] are all

involved in mRNA splicing or processing and RNA translation

initiation or termination, indicating alteration of mRNA

secondary structure and protein synthesis may be targeted by

both TNT and RDX. More work should be devoted to

exploring biological functions and interactions of the 58 genes

that may lead or be linked to toxicological effects or biochemical

endpoints.

This study addresses a sophisticated issue of discovering and

optimizing classifier gene sets in environmentally relevant animal

models. Although a perfect or the best solution to it is yet to be

found, we have demonstrated that the ISML pipeline can reduce

the dimensionality of microarray datasets, identify and rank

classifier genes, generate a small set of classifier genes, produce an

SVM classification model with high accuracy, and select a small

group of biomarker candidate genes for biological validation. This

approach can also be applied to discover diagnostic biomarker

genes exhibiting toxicity- or disease-dependent response in

environmental species from fish and springtail to water flea and

earthworm.

We report here some preliminary results of a much larger

effort. Our future work include: (1) compare the performance

of the ISML approach with that of other popular and existing

feature selection techniques such as SVM-RFE (SVM Recursive

Feature Elimination), CFS (Correlation based Feature Selection)

and x2 using the earthworm dataset and other microarray

datasets; (2) validate the final 58- gene set using other experi-

mental methods such as real-time quantitative PCR, (3) further

test the classifiers in field samples; (4) identify TNT/RDX

concentration-related classifier genes; and (5) validate the

biochemical outcome regulated by the biomarker candidate

genes. We believe that these consorted efforts will lead us to

discovery of novel biomarker genes useful for environmental risk

assessment.

Supporting Information

Table S1 Treatment information of 248 earthworm samples and

expression data of the 869 differentially expressed genes.

Found at: doi:10.1371/journal.pone.0013715.s001 (3.97 MB

XLS)

Table S2 Array oligo probe ID, target gene ID, probe and their

target gene sequences, overall weight, functional annotation, and

treatment(s) that altered the gene expression.

Found at: doi:10.1371/journal.pone.0013715.s002 (0.32 MB

XLS)

Table S3 The optimized set of 58 classifier genes as an output of

the ISML pipeline

Found at: doi:10.1371/journal.pone.0013715.s003 (0.12 MB

DOC)
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