35 research outputs found

    Effect of Mechanized Ridge Tillage with Rice-Rape Rotation on Paddy Soil Structure

    No full text
    Ridge tillage is one of the essential tillage methods in China. It affects the soil structure by altering the soil-water environment. With the rapid development of agricultural mechanization, the mechanized ridge tillage technology that combines modern mechanized agriculture with conservation tillage has become a pertinent agricultural production technology in the hilly regions. However, to date, the effects of mechanized ridge tillage on soil structure have garnered little attention. In this study, a field plot experiment involving the following four treatments: conventional tillage with rice and winter fallow (CK1), conventional tillage with rice-rape rotation (CK2), wide ridge tillage with rice-rape rotation (BT), and narrow ridge tillage with rice-rape rotation (RT) was conducted to study the effects of mechanized ridge tillage with rice-rape rotation on soil aggregate stability and soil porosity. The results indicated that mechanized ridge tillage could reduce the porosity of pores > 30 μm in diameter and increase the porosity of pores BT > CK2 > CK1. The BT and RT treatments could increase the agglomeration degree of the soil particles, which followed the order of RT > BT > CK2 > CK1. Therefore, mechanized ridge tillage with rice-rape rotation is effective in enhancing soil structure

    Hydraulic retarder torque control for heavy duty vehicle longitudinal control

    No full text

    Driving Mechanism of Comprehensive Land Consolidation on Urban–Rural Development Elements Integration

    No full text
    Identifying the driving mechanism of comprehensive land consolidation (CLC) on urban–rural development elements integration (URDEI) is of great significance for promoting the coordinated development of urban and rural areas. Based on the composition of urban and rural element systems, this study establishes the theoretical framework of the influence of CLC on URDEI and verifies the framework through empirical cases in Chongqing, China. The results show that (1) CLC promotes URDEI and realizes the rational allocation of urban and rural resources by improving the quality of urban and rural elements and opening up two-way flow channels. (2) The case analysis demonstrates that CLC can improve the quality of rural elements and increase the added value of the flow to the city, which in turn drives urban elements such as talents, technology, and capital to pour into the countryside, therefore forming a realistic path for the URDEI. This study helps understand the role of CLC in the transformation of URDEI and provides a reference for the scientific implementation of land consolidation

    Effect of Mechanized Ridge Tillage with Rice-Rape Rotation on Paddy Soil Structure

    No full text
    Ridge tillage is one of the essential tillage methods in China. It affects the soil structure by altering the soil-water environment. With the rapid development of agricultural mechanization, the mechanized ridge tillage technology that combines modern mechanized agriculture with conservation tillage has become a pertinent agricultural production technology in the hilly regions. However, to date, the effects of mechanized ridge tillage on soil structure have garnered little attention. In this study, a field plot experiment involving the following four treatments: conventional tillage with rice and winter fallow (CK1), conventional tillage with rice-rape rotation (CK2), wide ridge tillage with rice-rape rotation (BT), and narrow ridge tillage with rice-rape rotation (RT) was conducted to study the effects of mechanized ridge tillage with rice-rape rotation on soil aggregate stability and soil porosity. The results indicated that mechanized ridge tillage could reduce the porosity of pores > 30 μm in diameter and increase the porosity of pores < 0.5 μm. Furthermore, mechanized ridge tillage could increase soil aggregate stability; the order of average mass diameter and geometric average diameter was RT > BT > CK2 > CK1. The BT and RT treatments could increase the agglomeration degree of the soil particles, which followed the order of RT > BT > CK2 > CK1. Therefore, mechanized ridge tillage with rice-rape rotation is effective in enhancing soil structure

    Hydraulic retarder torque control for heavy duty vehicle longitudinal control

    No full text

    Transplantation of Neural Stem Cells Cotreated with Thyroid Hormone and GDNF Gene Induces Neuroprotection in Rats of Chronic Experimental Allergic Encephalomyelitis

    No full text
    The present study investigates whether transplantation of NSCs treated with T3 alone (T3/NSCs), or in conjunction with GDNF gene (GDNF-T3/NSCs), provides a better therapeutic effect than NSCs for chronic EAE. EAE rats were, respectively, injected with NSCs, T3/NSCs, GDNF-T3/NSCs, and saline at 10 days and sacrificed at 60 days after EAE immunization. The three cell grafted groups showed a significant reduction in clinical scores, inflammatory infiltration, and demyelination compared with the saline-injected group, and among the cell grafted groups, the reduction in GDNF-T3/NSCs group was the most notable, followed by T3/NSCs group. Grafted T3/NSCs and GDNF-T3/NSCs acquired more MAP2, GalC, and less GFAP in brain compared with grafted NSCs, and grafted GDNF-T3/NSCs acquired most MAP2 and least GalC among the cell grafted groups. Furthermore, T3/NSCs and GDNF-T3/NSCs grafting increased the expression of mRNA for PDGFαR, GalC, and MBP in lesion areas of brain compared with NSCs grafting, and the expression of mRNA for GalC and MBP in GDNF-T3/NSCs group was higher than that in T3/NSCs group. In conclusion, T3/NSCs grafting, especially GDNF-T3/NSCs grafting, provides a better neuroprotective effect for EAE than NSCs transplantation

    Electroacupuncture Therapy Effectively Protects the Rat Brain after Intracerebral Hemorrhage

    No full text
    Objective. Electroacupuncture (Ea) is a useful complementary and alternative therapy for intracerebral hemorrhage (ICH). However, the neurobiological basis for the Ea treatment of ICH is still unclear. The primary aim of the present study was to explore whether Ea prevents brain edema, apoptosis, excitotoxicity, and neuroinflammation in rats after hemorrhagic stroke. Methods. Rats were randomly divided into Sham, Control, and Ea groups. We used modified neurological severity score (mNSS) and gait analysis to estimate neurological function in rats, and PET/CT to assess glucose uptake and the hemorrhagic focus volume. Measurement of the brain water content and TUNEL staining were used to evaluate brain edema and cell apoptosis, respectively. The serum myelin basic protein (MBP), neuron-specific enolase (NSE), calcium-binding protein B (S100B), and tumor necrosis factor-α (TNF-α) concentrations were examined with ELISA. The expression levels of the CD68, GALC, Arg-1, iNOS, NR2A, Glu2R, AQP4, MAP2, GFAP, AQP9, Bcl-2, Bax, and Glu proteins around the hematoma were detected via immunohistochemistry staining. Western blot was used to analyze the levels of the AQP4, AQP9, Bax, Bcl-2, iNOS, and Arg-1 proteins. Results. Ea treatment improved neurological function and reduced the hemorrhagic area and brain water content in rats after ICH. The serum concentrations of MBP, NSE, S100B, and TNF-α all decreased significantly in the Ea group compared with the Control group. Expression levels of the Glu, NR2A, AQP4, AQP9, Bax, GFAP, iNOS, and CD68 proteins in brain tissue surrounding the hematoma were obviously suppressed in ICH rats following Ea treatment. Moreover, Ea stimulation increased the levels of the MAP2, GALC, Glu2R, Arg-1, and Bcl-2 proteins, but reduced the number of TUNEL-positive cells in rats after ICH. Conclusion. The results of this study suggest that Ea may exert neuroprotective effects by suppressing brain edema, apoptosis, excitotoxicity, and neuroinflammation

    Effect of light polariztion on pattern illumination super-resolution imaging

    No full text
    Far-field fluorescence microscopy has made great progress in the spatial resolution, limited by light diffraction, since the super-resolution imaging technology appeared. And stimulated emission depletion (STED) microscopy and structured illumination microscopy (SIM) can be grouped into one class of the super-resolution imaging technology, which use pattern illumination strategy to circumvent the diffraction limit. We simulated the images of the beads of SIM imaging, the intensity distribution of STED excitation light and depletion light in order to observe effects of the polarized light on imaging quality. Compared to fixed linear polarization, circularly polarized light is more suitable for SIM on reconstructed image. And right-handed circular polarization (CP) light is more appropriate for both the excitation and depletion light in STED system. Therefore the right-handed CP light would be the best candidate when the SIM and STED are combined into one microscope. Good understanding of the polarization will provide a reference for the patterned illumination experiment to achieve better resolution and better image quality
    corecore