13 research outputs found

    Machine learning for polyphenol-based materials

    No full text
    Polyphenol-based materials, primarily composed of polyphenolic compounds, have attracted considerable attention due to their unique chemical structures and biological activities. However, there are many derivatives of polyphenols, resulting in the complexity and diversity of polyphenol-based materials. Traditional methods are difficult to meet the rapid development of polyphenol-based materials. Machine learning, known for its proficiency in predicting performance, optimizing synthesis processes, and designing novel materials, offers significant potential in the intelligent design and applications of polyphenol-based materials. In this review, we summarize the recent advancements in the research and development of polyphenol-based materials and machine learning. The intersection of polyphenol-based materials and machine learning is also discussed, including their applications in biomedical, environmental, and energy fields. The challenges and prospects for the future development of polyphenol-based materials based on machine learning are highlighted

    Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers

    No full text
    Owing to highly tunable topology and functional groups, hyper-branched polymers are a potential candidate for toughening agents, for achieving supramolecular interactions with hydrogel networks. However, their toughening effects and mechanisms are not well understood. Here, by means of tensile and pure shear testings, we characterise the mechanics of a nanoparticle–hydrogel hybrid system that incorporates a hyper-branched polymer (HBP) with abundant hydroxyl end groups into the matrix of the polyacrylic acid (PAA) hydrogel. We found that the third and fourth generations of HBP are more effective than the second one in terms of strengthening and toughening effects. At a HBP content of 14 wt%, compared to that of the pure PAA hydrogel, strengths of the hybrid hydrogels with the third and fourth HBPs are 2.3 and 2.5 times; toughnesses are increased by 525% and 820%. However, for the second generation, strength is little improved, and toughness is increased by 225%. It was found that the stiffness of the hybrid hydrogel is almost unchanged relative to that of the PAA hydrogel, evidencing the weak characteristic of hydrogen bonds in this system. In addition, an outstanding self-healing feature was observed, confirming the fast reforming nature of broken hydrogen bonds. For the hybrid hydrogel, the critical size of failure zone around the crack tip, where serious viscous dissipation occurs, is related to a fractocohesive length, being about 0.62 mm, one order of magnitude less than that of other tough double-network hydrogels. This study can promote the application of hyper-branched polymers in the rapid evolving field of hydrogels for improved performance

    Geochronology of the Duguer range metamorphic rocks, Central Tibet: implications for the changing tectonic setting of the South Qiangtang subterrane

    No full text
    <p>The Duguer area represents one of the few occurrences of high-grade metamorphic rocks in the ‘Central Uplift’ zone of the Qiangtang terrane, central Tibet. The metamorphic rocks consist mainly of orthogneiss, paragneiss, and schist. To better understand the formation of these rocks, seven samples of gneiss and schist from the Duguer area were selected for <i>in situ</i> zircon U–Pb analysis and Ar–Ar dating of metamorphic minerals. The results suggest two distinct metamorphic stages, during the Late Triassic (229–227 Ma) and Late Jurassic (150–149 Ma). These stages correspond to the closure of the Palaeo-Tethys Ocean and northward subduction of the Bangong–Nujiang Neo-Tethys oceanic crust, respectively. We suggest that the Late Triassic metamorphic rocks of the Duguer area in the central South Qiangtang subterrane provide evidence of continental collision between the North and South Qiangtang subterranes, following the subduction of oceanic crust. It is likely that deep subduction of oceanic crust occurred along the Longmu Co–Shuanghu–Lancangjiang suture zone (LSLSZ), which would have hindered exhumation owing to the high density of oceanic crust. Subsequent break-off and delamination of the subducted oceanic slab at ~220 Ma may have resulted in exhumation of high-pressure and high-grade metamorphic rocks in the South Qiangtang subterrane. The Late Jurassic ages of metamorphism and deformation obtained in this study indicate the occurrence of an Andean-type orogenic event within the South Qiangtang subterrane. This hypothesis is further supported by an apparent age gap in magmatic activity (150–130 Ma) along the magmatic arc, and the absence of Late Jurassic sediments.</p

    Late Cretaceous tectono-magmatic activity in the Nize region, central Tibet: evidence for lithospheric delamination beneath the Qiangtang–Lhasa collision zone

    No full text
    <p>The results of zircon U–Pb age dating and whole-rock geochemistry for the Late Cretaceous Nize granodiorite porphyries, combined with analysis of near-coeval structural deformation of the Lower Cretaceous Langshan Formation, provide new data to better understand the tectonic evolution of the northern Lhasa subterrane, central Tibet. Zircon U–Pb ages of 89.2 ± 0.3 Ma to 87.8 ± 0.3 Ma indicate emplacement during the Late Cretaceous. Granodiorite porphyry intrusions were contemporaneous with the development of a regional angular unconformity, overlain by the Upper Cretaceous Jingzhushan (or Abushan) Formation, within the collision zone between the South Qiangtang and Lhasa terranes. Geochemical data for Nize granodiorite porphyries indicate that they have a calc-alkaline composition enriched in large-ion lithophile elements and light rare earth elements and depleted in high-field-strength elements and heavy rare earth elements. High Al<sub>2</sub>O<sub>3</sub> and Sr contents, low Yb and Y contents, and high Sr/Y ratios are similar to adakitic magmas.</p> <p>Structural analysis indicates two stages of deformation (D<sub>1</sub> and D<sub>2</sub>), with D<sub>1</sub> forming the focus of the present study. The D<sub>1</sub> deformation is represented by large-scale faults and records two periods of faulting. These periods are recognized as early compressional thrust faulting and a dominant late stage characterized by normal faulting and extension, with the latter stages of D<sub>1</sub> being near-coeval with the emplacement of the Nize granodiorite porphyries. The combination of zircon ages, geochemical data, and structural analysis indicates that the Nize granodiorite porphyries formed after collision of the South Qiangtang and Lhasa terranes. Adakitic magma derived from partial melting of the thickened lower or middle crust resulted from lithospheric delamination that may have been promoted by the convective removal of deeper lithospheric mantle.</p

    Pulse Electrochemical Driven Rapid Layer-by-Layer Assembly of Polydopamine and Hydroxyapatite Nanofilms via Alternative Redox <i>in Situ</i> Synthesis for Bone Regeneration

    No full text
    Polydopamine (PDA) is an important candidate material for the surface modification of biomedical devices because of its good adhesiveness and biocompatibility. However, PDA nanofilms lack osteoinductivity, limiting their applications in bone tissue engineering. Hydroxyapatite nanoparticles (HA-NPs) are the major component of natural bone, which can be used to effectively enhance the osteoinductivity of PDA nanofilms. Herein, we developed a pulse electrochemical driven layer-by-layer (PED-LbL) assembly process to rapidly deposit HA-NPs and PDA (HA-PDA) multilayer nanofilms. In this process, PDA and HA-NPs are <i>in situ</i> synthesized in two sequential oxidative and reductive pulses in each electrochemical deposition cycle and alternately deposited on the substrate surfaces. PDA assists the <i>in situ</i> synthesis of HA-NPs by working as a template, which avoids the noncontrollable HA nucleation and aggregation. The HA-PDA multilayer nanofilms serve as a tunable reservoir to deliver bone morphogenetic protein-2 and exhibit high osteoinductivity both <i>in vitro</i> and <i>in vivo</i>. This PED-LbL assembly process breaks the limitation of traditional LbL assembly, allowing not only the rapid assembly of oppositely charged polyelectrolytes but also the <i>in situ</i> synthesis of organic/inorganic NPs that are uniformly incorporated in the nanofilm. It has broad applications in the preparation of versatile surface coatings on various biomedical devices

    Biomimetic Mineralized Hierarchical Graphene Oxide/Chitosan Scaffolds with Adsorbability for Immobilization of Nanoparticles for Biomedical Applications

    No full text
    Biomimetic calcium phosphate mineralized graphene oxide/chitosan (GO/CS) scaffolds with hierarchical structures were developed. First, GO/CS scaffolds with large micropores (∼300 μm) showed high mechanical strength due to the electrostatic interaction between the oxygen-containing functional groups of GO and the amine groups of CS. Second, octacalcuim phosphate (OCP) with porous structures (∼1 μm) was biomimetically mineralized on the surfaces of the GO/CS scaffolds (OCP-GO/CS). The hierarchical microporous structures of OCP-GO/CS scaffolds provide a suitable environment for cell adhesion and growth. The scaffolds have exceptional adsorbability of nanoparticles. Bone morphogenetic protein-2 (BMP-2)-encapsulated bovine serum albumin (BSA) nanoparticles and Ag nanoparticles (Ag-NPs) were adsorbed in the scaffolds for enhancement of osteoinductivity and antibacterial properties, respectively. Antibacterial tests showed that the scaffolds exhibited high antibacterial properties against both Escherichia coli and Staphylococcus epidermidis. In vitro and in vivo experiments revealed that the scaffolds have good biocompatibility, enhanced bone marrow stromal cells proliferation and differentiation, and induced bone tissue regeneration. Thus, the biomimetic OCP-GO/CS scaffolds with immobilized growth factors and antibacterial agents might be excellent candidates for bone tissue engineering
    corecore