20,448 research outputs found

    The Color-Octet intrinsic charm in η′\eta^\prime and B→η′XB\to \eta^\prime X decays

    Full text link
    Color-octet mechanism for the decay B\to \eta^\prime X is proposed to explain the large branching ratio of Br(B\to \eta^\prime X)\sim 1\times 10^{-3} recently announced by CLEO. We argue that the inclusive \eta^\prime production in B decays may dominantly come from the Cabbibo favored b\to (\bar c c)_8s process where \bar c c pair is in a color-octet configuration, and followed by the nonperturbative transition (\bar c c)_8\to \eta^\prime X. The color-octet intrinsic charm component in the higher Fock states of \eta^\prime is crucial and is induced by the strong coupling of \eta^\prime to gluons via QCD axial anomaly.Comment: 9 pages, RevTex, 1 PS figur

    Cancellation of Infrared Divergences in Hadronic Annihilation Decays of Heavy Quarkonia

    Full text link
    In the framework of a newly developed factorization formalism which is based on NRQCD, explicit cancellations are shown for the infrared divergences that appeared in the previously calculated hadronic annihilation decay rates of P-wave and D-wave heavy quarkonia. We extend them to a more general case that to leading order in v2v^2 and next-to-leading order in αs\alpha_s, the infrared divergences in the annihilation amplitudes of color-singlet QQˉ(2S+1LJ)Q\bar{Q}(^{2S+1}L_J) pair can be removed by including the contributions of color-octet operators QQˉ(2S+1(L−1)J′)Q\bar{Q}(^{2S+1}(L-1)_{J'}), QQˉ(2S+1(L−3)J′′)Q\bar{Q}(^{2S+1}(L-3)_{J''}), ... in NRQCD. We also give the decay widths of 3DJ→LH^3D_J\rightarrow LH at leading order in αs\alpha_s.Comment: 8 pages, LaTex(3 figures included), to be publishe

    The meson BcB_c annihilation to leptons and inclusive light hadrons

    Get PDF
    The annihilation of the BcB_c meson to leptons and inclusive light hadrons is analyzed in the framework of nonrelativistic QCD (NRQCD) factorization. We find that the decay mode, which escapes from the helicity suppression, contributes a sizable fraction width. According to the analysis, the branching ratio due to the contribution from the color-singlet component of the meson BcB_c can be of order (10^{-2}). We also estimate the contributions from the color-octet components. With the velocity scaling rule of NRQCD, we find that the color-octet contributions are sizable too, especially, in certain phase space of the annihilation they are greater than (or comparative to) the color-singlet component. A few observables relevant to the spectrum of charged lepton are suggested, that may be used as measurements on the color-octet and color-singlet components in the future BcB_c experiments. A typical long distance contribution in the annihilation is estimated too.Comment: 26 pages, 5 figures (6 eps-files), submitted to Phys. Rev.

    Polarimetric Multispectral Imaging Technology

    Get PDF
    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration

    Simulation and analysis of in vitro DNA evolution

    Full text link
    We study theoretically the in vitro evolution of a DNA sequence by binding to a transcription factor. Using a simple model of protein-DNA binding and available binding constants for the Mnt protein, we perform large-scale, realistic simulations of evolution starting from a single DNA sequence. We identify different parameter regimes characterized by distinct evolutionary behaviors. For each regime we find analytical estimates which agree well with simulation results. For small population sizes, the DNA evolutional path is a random walk on a smooth landscape. While for large population sizes, the evolution dynamics can be well described by a mean-field theory. We also study how the details of the DNA-protein interaction affect the evolution.Comment: 11 pages, 11 figures. Submitted to PNA

    Pseuduscalar Heavy Quarkonium Decays With Both Relativistic and QCD Radiative Corrections

    Full text link
    We estimate the decay rates of ηc→2γ\eta_c\rightarrow 2\gamma, ηc′→2γ\eta_c'\rightarrow 2\gamma, and J/ψ→e+e−J/\psi\rightarrow e^+ e^-, ψ′→e+e−\psi^\prime\rightarrow e^+e^-, by taking into account both relativistic and QCD radiative corrections. The decay amplitudes are derived in the Bethe-Salpeter formalism. The Bethe-Salpeter equation with a QCD-inspired interquark potential are used to calculate the wave functions and decay widths for these ccˉc\bar{c} states. We find that the relativistic correction to the ratio R≡Γ(ηc→2γ)/Γ(J/ψ→e+e−)R\equiv \Gamma (\eta_c \rightarrow 2\gamma)/ \Gamma (J/ \psi \rightarrow e^+ e^-) is negative and tends to compensate the positive contribution from the QCD radiative correction. Our estimate gives Γ(ηc→2γ)=(6−7) keV\Gamma(\eta_c \rightarrow 2\gamma)=(6-7) ~keV and Γ(ηc′→2γ)=2 keV\Gamma(\eta_c^\prime \rightarrow 2\gamma)=2 ~keV, which are smaller than their nonrelativistic values. The hadronic widths Γ(ηc→2g)=(17−23) MeV\Gamma(\eta_c \rightarrow 2g)=(17-23) ~MeV and Γ(ηc′→2g)=(5−7) MeV\Gamma(\eta_c^\prime \rightarrow 2g)=(5-7)~MeV are then indicated accordingly to the first order QCD radiative correction, if αs(mc)=0.26−0.29\alpha_s(m_c)=0.26-0.29. The decay widths for bbˉb\bar b states are also estimated. We show that when making the assmption that the quarks are on their mass shells our expressions for the decay widths will become identical with that in the NRQCD theory to the next to leading order of v2v^2 and αs\alpha_s.Comment: 14 pages LaTex (2 figures included

    The effects of compressible and incompressible states on the FIR-absorption of quantum wires and dots in a magnetic field

    Full text link
    We investigate the effects of compressible and incompressible states on the FIR-absorption of quantum wires and dots in a homogeneous perpendicular magnetic field. The electron-electron interaction is treated in the Hartree approximation at a finite low temperature. The calculated dispersion of the collective excitations reproduces several experimental results.Comment: To be published by Physica Scripta in the proceedings of the 17NSM. 6 pages in LaTeX + 6 postscript figure

    On the theoretical and experimental uncertainties in the extraction of the J/psi absorption cross section in cold nuclear matter

    Get PDF
    We investigate the cold nuclear matter effects on J/ψJ/\psi production, whose understanding is fundamental to study the quark-gluon plasma. Two of these effects are of particular relevance: the shadowing of the parton distributions and the nuclear absorption of the ccˉc\bar{c} pair. If J/ψJ/\psi's are not produced {\it via} a 2→12 \to 1 process as suggested by recent theoretical works, one has to modify accordingly the way to compute the nuclear shadowing. This naturally induces differences in the absorption cross-section fit to the data. A careful analysis of these differences however requires taking into account the experimental uncertainties and their correlations, as done in this work for ddAu collisions at \sqrtsNN=200\mathrm{GeV}, using several shadowing parametrisations.Comment: 6 pages, 1 table, 3 figures, Submitted to J. Phys. G, talk given at the International Conference on Strangeness in Quark Matter (SQM2009), Buzios, Brasil, Sep. 27 - Oct. 2, 200

    Symmetry and designability for lattice protein models

    Full text link
    Native protein folds often have a high degree of symmetry. We study the relationship between the symmetries of native proteins, and their designabilities -- how many different sequences encode a given native structure. Using a two-dimensional lattice protein model based on hydrophobicity, we find that those native structures that are encoded by the largest number of different sequences have high symmetry. However only certain symmetries are enhanced, e.g. x/y-mirror symmetry and 180o180^o rotation, while others are suppressed. If it takes a large number of mutations to destabilize the native state of a protein, then, by definition, the state is highly designable. Hence, our findings imply that insensitivity to mutation implies high symmetry. It appears that the relationship between designability and symmetry results because protein substructures are also designable. Native protein folds may therefore be symmetric because they are composed of repeated designable substructures.Comment: 13 pages, 10 figure

    Experimental realization of a broadband illusion optics device

    Full text link
    We experimentally demonstrate the first metamaterial "illusion optics" device - an "invisible gateway" by using a transmission-line medium. The device contains an open channel that can block electromagnetic waves at a particular frequency range. We also demonstrate that such a device can work in a broad frequency range.Comment: 9 pages, 5 figure
    • …
    corecore