431 research outputs found

    Role of Bud3p in producing the axial budding pattern of yeast.

    Full text link

    Value of formalisation for women entrepreneurs in developing contexts: a review and research agenda

    Get PDF
    Formalisation is constantly being proposed as of great benefit to business expansion and success. This claim however has not been previously tested through a review of the empirical evidence, especially in relation to the large number of women in the developing world that operate in the informal economy. Therefore, our aim in this review is to systematise the current empirical evidence on gender, the informal economy and formalisation using a narrative synthesis of 76 papers. The papers were analysed along three main analytical themes – identity, institutions and, constraints and preferences, highlighting their conceptualisation in studies of different academic disciplines – economics, sociology, entrepreneurship and development. The review calls for more accurate accounts of formalisation decisions by widening the lens through which formalisations decisions are conceptualised. These should take account of the rich contextual and temporal dimensions central to these decisions, and recognise that gender alone is not a sufficient factor in explaining women’s choices in the informal economy. The review also highlights limitations in relation to the limited conceptual and empirical evidence on which development priorities such as formalisation are set. We propose a research agenda that centres on the need for conceptual frameworks that are more sensitive towards the multi-dimensional contexts of women’s choices

    Determination of the pion charge form factor for Q^2=0.60-1.60 GeV^2

    Full text link
    The data analysis for the reaction H(e,e' pi^+)n, which was used to determine values for the charged pion form factor Fpi for values of Q^2=0.6-1.6 GeV^2, has been repeated with careful inspection of all steps and special attention to systematic uncertainties. Also the method used to extract Fpi from the measured longitudinal cross section was critically reconsidered. Final values for the separated longitudinal and transverse cross sections and the extracted values of Fpi are presented.Comment: 11 pages, 6 figure

    Measurement of the Electric Form Factor of the Neutron at Q^2=0.5 and 1.0 (GeV/c)^2

    Full text link
    The electric form factor of the neutron was determined from measurements of the \vec{d}(\vec{e},e' n)p reaction for quasielastic kinematics. Polarized electrons were scattered off a polarized deuterated ammonia target in which the deuteron polarization was perpendicular to the momentum transfer. The scattered electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle detector. We find G_E^n = 0.0526 +/- 0.0033 (stat) +/- 0.0026 (sys) and 0.0454 +/- 0.0054 +/- 0.0037 at Q^2 = 0.5 and 1.0 (GeV/c)^2, respectively.Comment: 5 pages, 2 figures, as publishe

    Measurement of the Charged Pion Electromagnetic Form Factor

    Get PDF
    Separated longitudinal and transverse structure functions for the reaction 1H(e,eprime pi+)n were measured in the momentum transfer region Q2=0.6-1.6 (GeV/c)**2 at a value of the invariant mass W=1.95 GeV. New values for the pion charge form factor were extracted from the longitudinal cross section by using a recently developed Regge model. The results indicate that the pion form factor in this region is larger than previously assumed and is consistent with a monopole parameterization fitted to very low Q2 elastic data.Comment: 5 pages, 3 figure

    Measurements of electron-proton elastic cross sections for 0.4<Q2<5.5(GeV/c)20.4 < Q^2 < 5.5 (GeV/c)^2

    Full text link
    We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 << Q2Q^2 << 5.5 (GeV/c)2(\rm GeV/c)^2. These measurements represent a significant contribution to the world's cross section data set in the Q2Q^2 range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.Comment: 17 pages, 18 figures; text added, some figures replace

    Charged pion form factor between Q2Q^2=0.60 and 2.45 GeV2^2. I. Measurements of the cross section for the 1{^1}H(e,eâ€Čπ+e,e'\pi^+)nn reaction

    Full text link
    Cross sections for the reaction 1{^1}H(e,eâ€Čπ+e,e'\pi^+)nn were measured in Hall C at Thomas Jefferson National Accelerator Facility (JLab) using the CEBAF high-intensity, continous electron beam in order to determine the charged pion form factor. Data were taken for central four-momentum transfers ranging from Q2Q^2=0.60 to 2.45 GeV2^2 at an invariant mass of the virtual photon-nucleon system of WW=1.95 and 2.22 GeV. The measured cross sections were separated into the four structure functions σL\sigma_L, σT\sigma_T, σLT\sigma_{LT}, and σTT\sigma_{TT}. The various parts of the experimental setup and the analysis steps are described in detail, including the calibrations and systematic studies, which were needed to obtain high precision results. The different types of systematic uncertainties are also discussed. The results for the separated cross sections as a function of the Mandelstam variable tt at the different values of Q2Q^2 are presented. Some global features of the data are discussed, and the data are compared with the results of some model calculations for the reaction 1{^1}H(e,eâ€Čπ+e,e'\pi^+)nn.Comment: 26 pages, 23 figure

    Charged pion form factor between Q^2=0.60 and 2.45 GeV^2. II. Determination of, and results for, the pion form factor

    Get PDF
    The charged pion form factor, Fpi(Q^2), is an important quantity which can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fpi are presented for Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically below the monopole parameterization that describes the low Q^2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard contributions to hadronic structure in the intermediate Q^2 regime.Comment: 18 pages, 11 figure
    • 

    corecore