120 research outputs found
Screening and Evaluation of Polyhydroxybutyrate-Producing Strains from Indigenous Isolate Cupriavidus taiwanensis Strains
Polyhydroxyalkanoate (PHA) is a biodegradable material with many potential biomedical applications, including medical implants and drug delivery. This study developed a system for screening production strains in order to optimize PHA production in Cupriavidus taiwanensis 184, 185, 186, 187, 204, 208, 209 and Pseudomona oleovorans ATCC 29347. In this study, Sudan black B staining, Infrared (IR) and Gas Chromatography (GC) analysis indicated that the best strain for PHA synthesis is C. taiwanensis 184, which obtains polyhydroxybutyrate (PHB). Cultivation of C. taiwanensis 184 under a pH of 7.0, at 30 °C, and at an agitation rate of 200 rpm, obtained a PHB content of 10% and PHB production of 0.14 g/L. The carbon and nitrogen types selected for analysis of PHB production by C. taiwanensis 184 were gluconic acid and NH4Cl, respectively. Optimal carbon/nitrogen ratio for PHB production was also determined. This study demonstrated a PHB content of 58.81% and a PHB production of 2.44 g/L when the carbon/nitrogen ratio of 8/1 was selected for C. taiwanensis 184. A two-stage fermentation strategy significantly enhanced PHB content and PHB production. Under a two-stage fermentation strategy with nutrient-limited conditions, C. taiwanensis 184 obtained a PHB content of 72% and a PHB concentration of 7 g/L. Finally, experimental results confirmed that optimizing the growth medium and fermentation conditions for cultivating the indigenous C. taiwanensis 184 strain substantially elevated PHB content from 10% to 72% and PHB production from 0.14 g/L to 7 g/L, respectively
Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04
Abstract Background Pineapple is the third most important tropical fruit produced worldwide, and approximately 24.8 million tons of this fruit are produced annually throughout the world, including in Thailand, which is the fourth largest pineapple producer in the world. Pineapple wastes (peel and core) are generated in a large amount equal to approximately 59.36% based on raw material. In general, the anaerobic digestion of pineapple wastes is associated with a high biochemical oxygen demand and high chemical oxygen demand, and this process generates methane and can cause greenhouse gas emissions if good waste management practices are not enforced. This study aims to fill the research gap by examining the feasibility of pineapple wastes for promoting the high-value-added production of biodegradable polyhydroxybutyrate (PHB) from the available domestic raw materials. The objective of this study was to use agro-industrial residue from the canned pineapple industry for biodegradable PHB production. Results The results indicated that pretreatment with an alkaline reagent is not necessary. Pineapple core was sized to − 20/+ 40 mesh particle and then hydrolyzed with 1.5% (v/v) H2SO4 produced the highest concentration of fermentable sugars, equal to 0.81 g/g dry pineapple core, whereas pineapple core with a + 20 mesh particle size and hydrolyzed with 1.5% (v/v) H3PO4 yielded the highest concentration of PHB substrates (57.2 ± 1.0 g/L). The production of PHB from core hydrolysate totaled 35.6 ± 0.1% (w/w) PHB content and 5.88 ± 0.25 g/L cell dry weight. The use of crude aqueous extract (CAE) of pineapple waste products (peel and core) as a culture medium was investigated. CAE showed very promising results, producing the highest PHB content of 60.00 ± 0.5% (w/w), a cell dry weight of 13.6 ± 0.2 g/L, a yield ( YP/S ) of 0.45 g PHB/g PHB substrate, and a productivity of 0.160 g/(L h). Conclusions This study demonstrated the feasibility of utilizing pineapple waste products from the canned pineapple industry as lignocellulosic feedstocks for PHB production. C. necator strain A-04 was able to grow on various sugars and tolerate levulinic acid and 5-hydroxymethyl furfural, and a detoxification step was not required prior to the conversion of cellulose hydrolysate to PHB. In addition to acid hydrolysis, CAE was identified as a potential carbon source and offers a novel method for the low-cost production of PHB from a realistic lignocellulosic biomass feedstock
- …