4 research outputs found

    A study of the interactions between glass ionomer cement and Streptococcus sanguis biofilm

    No full text
    Available from British Library Document Supply Centre- DSC:DXN058924 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Effect of Acidic Agents on Surface Roughness of Dental Ceramics

    No full text
    Background: An increase in surface roughness of ceramics may decrease strength and affect the clinical success of ceramic restorations. However, little is known about the effect of acidic agents on ceramic restorations. The aim of this study was to evaluate the surface roughness of dental ceramics after being immersed in acidic agents. Methods: Eighty-three ceramic disk specimens (12.0 mm in diameter and 2.0 mm in thickness) were made from four types of ceramics (VMK 95, Vitadur Alpha, IPS Empress Esthetic, and IPS e.max Ceram). Baseline data of surface roughness were recorded by profilometer. The specimens were then immersed in acidic agents (citrate buffer solution, pineapple juice and green mango juice) and deionized water (control) at 37°C for 168 hours. One group was immersed in 4% acetic acid at 80°C for 168 hours. After immersion, surface roughness was evaluated by a profilometer at intervals of 24, 96, and 168 hours. Surface characteristics of specimens were studied using scanning electron microscopy (SEM). Data were analyzed using two-way repeated ANOVA and Tukey′s multiple comparisons (α = 0.05). Results: For all studied ceramics, all surface roughness parameters were significantly increased after 168 hours immersion in all acidic agents (P < 0.05). After 168 hours in 4% acetic acid, there were significant differences for all roughness parameters from other acidic agents of all evaluated ceramics. Among all studied ceramics, Vitadur Alpha showed significantly the greatest values of all surface roughness parameters after immersion in 4% acetic acid (P < 0.001). SEM photomicrographs also presented surface destruction of ceramics in varying degrees. Conclusion: Acidic agents used in this study negatively affected the surface of ceramic materials. This should be considered when restoring the eroded tooth with ceramic restorations in patients who have a high risk of erosive conditions

    Flexural strength of fluorapatite-leucite and fuorapatite porcelains exposed to erosive agents in cyclic immersion

    No full text
    OBJECTIVE: The aim of this study was to evaluate the fexural strength of two porcelain materials (IPS d.SIGN and IPS e.max Ceram) exposed to erosive agents. MATERIAL AND METHODS: One hundred and twenty bar-shaped specimens were made from each of fuorapatite-leucite porcelain (IPS d.SIGN) and fuorapatite porcelain (IPS e.max Ceram) and divided into 8 groups of 15 specimens each. Six groups were alternately immersed in the following storage agents for 30 min: deionized water (control), citrate buffer solution, pineapple juice, green mango juice, cola soft drink and 4% acetic acid. Then, they were immersed for 5 min in deionized water at 37ºC. Seven cycles were completed, totalizing 245 min. A 7th group was continuously immersed in 4% acetic acid at 80ºC for 16 h. The final, 8th, group was stored dry at 37ºC for 245 min. Three-point bending tests were performed in a universal testing machine. The data were analyzed statistically by 2-way ANOVA, Tukey's HSD test and t-test at signifcance level of 0.05. RESULTS: The fexural strengths of all groups of each porcelain after exposure to erosive agents in cyclic immersion did not differ signifcantly (p>0.05). For both types of porcelain, dry storage at 37ºC yielded the highest fexural strength, though without signifcant difference from the other groups (p>0.05). The fexural strengths of all groups of fuorapatite porcelains were signifcantly higher (p<0.05) than those of the fuorapatite-leucite porcelains. CONCLUSIONS: This study demonstrated that the erosive agents evaluated did not affect the fexural strength of the tested dental porcelains
    corecore