42 research outputs found

    Quality Aware Generative Adversarial Networks

    Full text link
    Generative Adversarial Networks (GANs) have become a very popular tool for implicitly learning high-dimensional probability distributions. Several improvements have been made to the original GAN formulation to address some of its shortcomings like mode collapse, convergence issues, entanglement, poor visual quality etc. While a significant effort has been directed towards improving the visual quality of images generated by GANs, it is rather surprising that objective image quality metrics have neither been employed as cost functions nor as regularizers in GAN objective functions. In this work, we show how a distance metric that is a variant of the Structural SIMilarity (SSIM) index (a popular full-reference image quality assessment algorithm), and a novel quality aware discriminator gradient penalty function that is inspired by the Natural Image Quality Evaluator (NIQE, a popular no-reference image quality assessment algorithm) can each be used as excellent regularizers for GAN objective functions. Specifically, we demonstrate state-of-the-art performance using the Wasserstein GAN gradient penalty (WGAN-GP) framework over CIFAR-10, STL10 and CelebA datasets.Comment: 10 pages, NeurIPS 201

    Sparsity based stereoscopic image quality assessment

    Get PDF
    In this work, we present a full-reference stereo image quality assessment algorithm that is based on the sparse representations of luminance images and depth maps. The primary challenge lies in dealing with the sparsity of disparity maps in conjunction with the sparsity of luminance images. Although analysing the sparsity of images is sufficient to bring out the quality of luminance images, the effectiveness of sparsity in quantifying depth quality is yet to be fully understood. We present a full reference Sparsity-based Quality Assessment of Stereo Images (SQASI) that is aimed at this understanding

    Target Tracking in Blind Range of Radars With Deep Learning

    Get PDF
    Surveillance radars form the first line of defense in border areas. But due to highly uneven terrains, there are pockets of vulnerability for the enemy to move undetected till they are in the blind range of the radar. This class of targets are termed the 'pop up' targets. They pose a serious threat as they can inflict severe damage to life and property. Blind ranges occur by way of design in pulsed radars. To minimize the blind range problem, multistatic radar configuration or dual pulse transmission methods were proposed. Multistatic radar configuration is highly hardware intensive and dual pulse transmission could only reduce the blind range, not eliminate it. In this work we propose, elimination of blind range using deep learning based video tracking for mono static surveillance radars. Since radars operate in deploy and forget mode, visual system must also operate in a similar way for added advantage. Deep Learning paved way for automatic target detection and classification. However, a deep learning architecture is inherently not capable of tracking because of frame to frame independence in processing. To overcome this limitation, we use prior information from past detections to establish frame to frame correlation and predict future positions of target using a method inspired from CFAR in a parallel channel for target tracking. © 2020 Warsaw University of Technology

    Blind image quality evaluation using perception based features

    Get PDF
    This paper proposes a novel no-reference Perception-based Image Quality Evaluator (PIQUE) for real-world imagery. A majority of the existing methods for blind image quality assessment rely on opinion-based supervised learning for quality score prediction. Unlike these methods, we propose an opinion unaware methodology that attempts to quantify distortion without the need for any training data. Our method relies on extracting local features for predicting quality. Additionally, to mimic human behavior, we estimate quality only from perceptually significant spatial regions. Further, the choice of our features enables us to generate a fine-grained block level distortion map. Our algorithm is competitive with the state-of-the-art based on evaluation over several popular datasets including LIVE IQA, TID & CSIQ. Finally, our algorithm has low computational complexity despite working at the block-level

    AUTOMATED SYSTEM AND METHOD OF RETAINING IMAGES BASED ON A USER'S FEEDBACK ON IMAGE QUALITY

    Get PDF
    An automated system and method for retaining images in a smart phone are disclosed . The system may then determine a no - reference quality score of the image using a PIQUE module . The PIQUE module utilizes block level features of the image to determine the no - reference quality score . The system may present the image and the no - reference quality score to the user and accept a feedback towards quality of the image .The system may utilize a supervised learning model for continually learning a user ' s perception of quality of the image , the no -reference quality score determined by the PIQUE module , and the user feedback . Based on the learning , the supervised learning model may adapt the no - reference quality score and successively the image may either be retained or isolated for deletion , based on the adapted quality score and a predefined threshold rang
    corecore