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Abstract—This paper proposes a novel no-reference information as in [11]. These methods are truly blind in their

Perception-based Image QUality Evaluator (PIQUE) for real-
world imagery. A majority of the existing methods for blind
image quality assessment rely on opinion-based supervised
learning for quality score prediction. Unlike these methods,
we propose an opinion unaware methodology that attempts to
quantify distortion without the need for any training data. Our
method relies on extracting local features for predicting quality.
Additionally, to mimic human behavior, we estimate quality only
from perceptually significant spatial regions. Further, the choice
of our features enables us to generate a fine-grained block
level distortion map. Our algorithm is competitive with the
state-of-the-art based on evaluation over several popular datasets
including LIVE IQA, TID & CSIQ. Finally, our algorithm has
low computational complexity despite working at the block-level.

Keywords—No reference image quality assessment, spatial ac-
tivity, Perceptual quality

I. INTRODUCTION

Increasing trends in multimedia content sharing over social
networking sites and video streaming over the internet has
precipitated the need to disseminate image content of high
perceptual quality. Since in most such cases, there is no access
to the original/uncompressed image data, one cannot estimate
the quality of the received image relative to the reference or
pristine image, thus rendering full reference methods to be of
little use. Therefore, there is an acute need for an efficient
Blind/No-Reference Image Quality Assessment (B/NR-IQA)
algorithm for accurately estimating the perceptual quality of
images. In this context, NR-IQA has been an important area
of research in the recent past. The approaches to NR-IQA
can be categorized based on the requirement of training data
(Subjective or Objective quality scores) and apriori knowledge
of distortion. In the following, we broadly show how the state-
of-the-art methods fall into one of these categories.

The algorithms in [1], [2], [3], [4], [5] require prior
information about the type of distortion (like JPEG, JPEG2000,
Blur, ringing, etc.) for estimation of image quality. The algo-
rithms in [6], [7], [8], [9], [10], [11], [12], [13], [14], [15] do
not require such prior information about distortion types.

Some of these methods have trained their features using
human subjective scores [6], [7], [8], [9], [13], [15], while
others [10], [12], [14] have used objective scores derived from
applying distortions to pristine images. There is also a class of
methods that do not require either training data or distortion
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approach to NR-IQA.

In this paper, we propose an approach that does not involve
any statistical learning (either from subjective or objective
scores) for assessing image quality. Our goal is to estimate the
amount of distortion present in a given test image, solely based
on the local block/patch level characteristics of the test image.
To address this challenging problem, we have taken cues from
human perception of distortions. We attempt to classify a given
block as a distorted block or not and assign a score accordingly.
In addition to predicting quality, our method generates a fine-
grained block-level spatial quality mask that is in turn useful
for many other applications like feature point extraction, object
detection, and compression.

The rest of the paper is organized as follows. Section II
gives a brief background of the related work in this area.
Section III provides details of the proposed approach for blind
image quality assessment. In Section IV, the experimental
framework and results of our method on different datasets
are presented. A performance comparison with relevant state-
of-the-art methods is also reported. Section V provides the
conclusions and direction for future work.

II. BACKGROUND

In this section, we present a brief review of the state-of-the-
art NR-IQA methods. In [6], Moorthy et al. proposed the Blind
Image Quality Index (BIQI) algorithm, that uses statistical fea-
tures computed from the wavelet coefficients of input images.
As an enhancement to this work, Moorthy et al. in [7] proposed
the Distortion Identification-Based Image Verity and Integrity
Evaluation (DIIVINE) algorithm that uses 88 features and
a two-stage classification framework for quality estimation.
However, due to its computational complexity, real-time imple-
mentation is not possible. Saad et al. in [8] presented the Blind
Image Integrity Notator Using DCT Statistics-1I (BLIINDS-II)
algorithm that uses generalized statistical model parameters
derived from local DCT coefficients to estimate the quality of
an image. In [9], Mittal et al. presented Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE), a fast algo-
rithm that uses 36 statistical features based on Natural Scene
Statistics (NSS)-based model in spatial domain to perform
quality estimation and distortion identification. It out performs
DIIVINE and BLIINDS-II in both performance and com-
putation time. In [10], Mittal et al. proposed an algorithm
that conducts Probabilistic latent semantic analysis (pLSA)
on the statistical features of a large collection of pristine and
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distorted image patches. This technique does not use human
subjective scores for training but relies on the learned features
extracted from pristine and distorted patches to estimate quality
score. Mittal et al. in [11] proposed the Naturalness Image
Quality Evaluator (NIQE) algorithm that uses quality aware
NSS features extracted only from a collection of pristine image
patches to estimate quality. Xue et al. in [12] proposed a
Quality-Aware Clustering (QAC) algorithm that learns a set
of quality-aware centroids from pristine and distorted imagery
and uses them as codebooks to infer the quality of a test image.
Le, et al. in [13] proposed a Convolutional Neural Networks for
No-Reference Image Quality Assessment (CNN-NRIQA) that
works in spatial domain wihtout using handcrafted features
for predicting image quality. Peng et al. in [14] proposed
a Blind Learning of Image Quality using Synthetic Scores
(BLISS) algorithm that trained a model using synthetic scores
instead of using human opinion scores. Huixuan et al. in
[15] proposed Blind Image Quality Assessment using semi-
supervised rectifier networks algorithm that generalizes across
a large set of images and distortion types without the need for
a large amount of labeled data. Except QAC [12] and CNN-
NRIQA [13], none of the other NR-IQA methods provide a
spatial quality map of the input image. In this paper, we present
a perception-based, block-level, blind approach in the spatial
domain to estimate quality.

III. PROPOSED APPROACH

Our method is inspired from the following two principles
about how humans perceive image quality. Firstly, humans
visual attention is highly directed towards salient points in
an image or spatially active regions. Secondly, local quality
at block/patch level adds up to the overall quality of an image
as perceived by humans. In our approach, the first principle is
addressed by estimating distortion only on regions of spatial
prominence and the second, by computing distortion levels
at the local block level of size n x n, where n = 16.
Working at the block level would enable us to exploit the local
characteristics that account for overall perceptual quality of an
image.
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Fig. 1. Block Diagram of the proposed approach

Fig. 1 shows the block diagram of the proposed approach.
The input image is subjected to a preprocessing step. Block
level analysis is then performed for distortion identification.
Each distorted block is assigned a score, based on the type of
distortion. The block level scores are then pooled to determine
the overall image quality. In addition to the quality score,
a spatial quality map is also generated that can be used
effectively by other applications. We describe each of these
stages in the following sub-sections.

A. Divisive Normalization

The first pre-processing step that is performed on the input
test image is local mean removal and divisive normalization.
This step extracts Natural Scene Statistics (NSS) features from
the grayscale image as explained in [16]. Such an operation is
applied to luminance image I(7, j) to produce:

1 7, = 1
(i) o(i,j)+C M
where 7 € 1,2........ M, j e 1,2.... N are spatial indices,

M, N are the image height and width respectively, C is
constant, that is set to 1 to prevent instability and where
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2D circularly symmetric Gaussian weighting function sampled
out to 3 standard deviations (K = L = 3) and rescaled to unit
volume. The transformed luminance values of (1) are called
Mean Subtracted Contrast Normalized (MSCN) coefficients.
We refer the reader to BRISQUE IQE model [9] for a detailed
exposition on this process.

The input image is segmented into non-overlapping blocks,
Bk of size, n x n leaving out those at the image boundaries
on all four sides. The MSCN coefficients are utilized to label
a given block either as a uniform (U) block or as a non-
uniform/spatially active (SA) blocks. The criterion to label a
block is given below.

_ U v, <1y
Bk_{SA ve > Ty )

where 1, is the variance of the MSCN coefficients, 1(i, j)
in a given block, Bi, £ € 1,2,...,Np. Np is the total
number of blocks of size n x n with n=16 in our case.
Through empirical observations, we set threshold 77, as equal
to 10%. Since, we are computing the variance of normalized
coefficients that varies from O to 1, it is treated as a percentage.
The empirical observations correlate well perceptually also,
where-in one would expect the variance of MSCN coefficients
to be low for blocks with low spatial activity. Blocks with
considerable or high spatial activity would have variance
greater than 0.1 (which effectively means 10%).

B. Block Level Distortion Estimation

The most common distortions affecting images are due to
compression and transmission. The perceivable artifacts due
to these distortions can broadly be classified into blockiness,
blur and noise. In Fig. 2, we show the methodology for block
level distortion classification and quantification for estimating
a block score.

In our method, spatially active blocks, By, are analysed for
two types of distortion criteria, namely, noticeable distortion
criterion and additive white noise criterion. A distorted block is
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Fig. 2. Block level Distortion Classification and Quantification

then assigned a distortion score based on the type of distortion.
In the following, we define the criteria to estimate whether a
spatially active block is affected by distortions or not.

1) Noticeable Distortion Criterion: A block level distortion
is noticeable if at least one of its edge segments (segment is
defined as a collection of 6 contiguous pixels in a block edge)
exhibits low spatial activity [17]. For a spatially active block,
By, derived from I(i, j) of size n x n with n = 16, each edge,
L, is divided into eleven segments as under:

apg =Lp(x):x=¢q,¢+1,...,q+05, 5)

where ay,q is the structuring element, p € 1,2,3,4 denotes
edge index, and q € 1,2,3,...,11 denotes the segment index. The
block and its edge segments are shown in Fig. 3. A segment
exhibits low spatial activity if the standard deviation of the
segment, a,, is less than threshold Ts7rp.

opq < TsTp (6)
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Fig. 3. (a). Block By, and its edges (b). Eleven segments of the edge, L.

In [17], the analysis is done on the luminance image, and
for 8 x 8 block size. However, threshold determination becomes
a difficult task when working with luminance images. To
mitigate this issue, we work with MSCN coefficients that help
in significantly reducing threshold variability. After performing
experiments, we could arrive at empirical threshold for Tsrp
= 10%. A block is considered as distorted if at least one of its
segments satisfies (6). The following sub-section explains the
criterion used to classify and estimate noise in a given block.

2) Noise Criterion: Additional perception based center-
surround criterion is considered here to model noise distortion
using block level MSCN features. This criterion is inspired
by the Human Visual System’s (HVS) sensitivity to center-
surround variations. We divide the block into two segments as

shown in Fig. 4. One is the central segment that contains the
center two columns, S..,. The other segment, S, consists
of the remaining columns.
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Fig. 4. Choice of center and surround regions in a block

On analysis, we found that there is a definitive relation
between the center-surround deviation ratio and the block stan-
dard deviation of that MSCN block. We empirically modeled
a parameter, 5 to quantify this relation:

|[(Zee2) — owur|

- max(("“” ), Ubllc) ’

Osur

B )

where o .., is the standard deviation of segment, Scey,, Tsyr
is the standard deviation of segment, Sy, opi is the sta}ndard
deviation of spatially active block, By derived from I(z, 7).
Through Fig. 5, we try to explain the variation of 3 for varying
noisy conditions. Fig. 5(a), Fig. 5(c) & Fig. 5(e) show the low,
medium and high noisy images from LIVE Database. Fig. 5(b),
Fig. 5(d) & Fig. 5(f) shows the distribution of 5 and o across
blocks for the corresponding images in Fig. 5(a), Fig. 5(c) &
Fig. 5(e) respectively. It can be observed from Fig. 5(b), Fig.
5(d) & Fig. 5(f) that as noise increases (low SNR conditions),
B decreases and becomes almost zero for high noise cases. In
high SNR conditions, 3 is almost equal to the block standard
deviation, oy;. Thus, a given block, By can be categorized as
affected with noise if it satisfies the below condition:

Oblk >2*5. (8)

3) Quantifying Distortion using Block Variance Parameter:
Once we identify that a given block is distorted, the next step
would be to quantify the amount of distortion contributed by
that block to the overall score. Through our experiments, we
could observe that the variance of the MSCN coefficients of
a given block, vy shows significant signature of the amount
of distortion present in that block. This is illustrated in Fig. 6.
Fig. 6(a) shows the high spatial activity image and Fig. 6(b),
Fig. 6(c) & Fig. 6(d) show the variation of block variance
of the MSCN coefficients of a JPEG compressed, blurred
and AWGN images respectively. These images are taken from
LIVE database. In Fig. 6(b) and Fig. 6(c) block variance is
very low for highly distorted images as compared with medium
and pristine images, indicating that variance is inversely pro-
portional to the amount of distortion. However, this is not
the case with noise distortion. Due to the additive nature of
Gaussian noise, blocks affected by such a distortion cannot
have low variance. Instead, the variance of such blocks is
expected to increase with increasing noise. This was observed
experimentally as well, as shown in the plot of Fig. 6(d). So,
while quantifying noise using the same parameter variance,
we need to understand that it is directly proportional to the
amount of distortion.
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4) Pooling: We use variance feature, vy, to assign the
amount of distortion for a distorted block. The following is
the distortion assigment procedure for a given block, Bj.

1 if (6)&(8)
Dy = { Vo if (8) ©)
(]. — Vblk) Zf (6)

Perception based Image Quality Evaluator, PIQUE is then

given by:
Nsa
Z Dsk + Cl
k=1
PIQUE = , 10
¢ (Nga + Ch) (10

where Ng 4, is the number of Spatially Active blocks in a
given image, and where C is a positive constant (C; = 1 in
our case) that is included to prevent numerical instability when
the denominator of (10) goes to 0. This is possible in cases of



high blur, where images get over smoothened resulting in no
spatial activity. It can also be noted that the value of D in any
of the above cases, does not exceed the value of 1. As a result,
the PIQUE score also lies in the range of 0 to 1, as per (10). If
the PIQUE score is near to zero (0 to 0.3), it represents a good
quality image. If it is near to 1, it refers to a poor quality image
(0.5 to 1.0). If the PIQUE score lies in between 0.3 to 0.5 it can
be treated as an average quality image. In the whole process
of PIQUE index calculation, only one threshold has been used
at two places (4) & (6). This variance threshold (1y or Tsrp)
is used essentially to determine whether a given block or a
block-edge-segment exhibits low spatial activity. However, the
distortion analysis at these two places is handled differently as
explained in the algorithm.

IV. EXPERIMENTS AND RESULTS

In this section, we report the performance of our algorithm
on most of the publicly available benchmark databases. Also,
the effect of changing thresholds on the performance of the
method is reported.

A. Experimental Framework and Results

The performance of PIQUE is evaluated on three of the
largest publicly available databases that have human subjective
scores, LIVE [18], CSIQ [19] and TID2008 [20]. Tables I, II,
IIT report the correlation scores (SROCC [21] & PCC [21]) of
PIQUE, QAC [12] and NIQE [11] on three databases, LIVE,
CSIQ and TID respectively. Table I shows that the proposed
metric, PIQUE performed well over QAC and NIQE both in
terms of SROCC and PCC on LIVE IQA database. Even on
CSIQ and TID databases, PIQUE is very competitive to QAC
and NIQE and performed consistently better for White Noise
in terms of both SROCC and PCC. Fast Fading (FF) was not
considered in the above reports for consistency and comparison
with QAC & NIQE.

In addition to a distortion score to the image, our algorithm
also generates a spatial quality mask. The mask generated
by our method is more fine-graded (Block size=16x16) than
that reported in QAC [12]. Additionally, PIQUE mask also
identifies the type of dominant distortion that is available at
the block level as shown in Fig. 7. To demonstrate this block
level distortion analysis capability of PIQUE, a JP2K distorted
image from LIVE database is taken and AWGN noise is added
to the cloudy patches. This distorted image along with its
corresponding spatial quality mask as generated by PIQUE are
shown in Fig. 7. Green fill indicates uniform-block that is not
considered for analysis. Red and Yellow fills indicate blocks
that satisfy (6) & (8) respectively. Spatially active blocks that
are not affected by any distortion are not filled with any color.
This can also be perceptually corroborated.

1) Effect of Ty and choice of block size: In this sub-section,
we discuss the effect of varying Ty and choice of block size
on the performance of the metric. Table IV shows the SROCC
scores for LIVE database with varying Ty (Spatial activity
threshold) in steps of 5 from 5% to 30%. It can be observed
that, significant performance variations are not seen in the
range from 5% to 20%. Table V shows the SROCC scores
for LIVE database with varying block sizes from 16x16 to
96x96 with step size of 16. It can be noted that for block

sizes greater than 32x 32, there is a drop in the performance of
the algorithm. This indicates that the selected criteria capture
distortions only at smaller block sizes. It can thus be noted
from these results that local characteristics at the block level
play a prominent role in quality prediction.

B. Computational Time

Though we are analyzing local characteristics at block
level, in most of the cases, we are using only standard deviation
& variance as the parameters for distortion identification and
evaluation. Also, since our metric is content dependent, the
timing varies from image to image. We report here in Table
VI, the average execution time (in MATLAB) of our metric
per image when tested on the complete LIVE Database (808
images). We used a PC with Intel Core-i3-2100 CPU and 2 GB
RAM. Our metric can be used in real-time applications with
optimized C implementation for SVGA resolution images at
33 FPS. Table VI also shows execution time comparison with
other IQA techniques.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a completely blind NR-Quality
Evaluation Metric that uses cues from human visual system to
address the problem of blind image quality assessment. PIQUE
scores correlate well with human subjective scores of three
different databases. The algorithm is moderately fast and can
be used in real-time applications. Additionally, the block-level
analysis presented here helps in the generation of a distortion
identifying spatial quality mask that is useful in many other
applications.

We are currently working towards addressing the scenario
where a given block is affected by more than one distortion
using a weighted combination of scores for each of the com-
ponent distortions. We believe that such an approach would
be more effective in handling realistic distortion scenarios.
Further, we are working on demonstrating the utility of the
distortion mask in various task dependent quality assessment
applications.

SROCC
Algorithm | JP2K | JPEG | WN | Blur All
QAC 0.85 0.94 0.96 | 091 0.89
NIQE 0.91 0.85 097 | 094 | 0.88
PIQUE 0.93 0.89 096 | 0.92 | 091
Pearson CC
QAC 0.85 0.94 0.96 | 091 0.89
NIQE 091 0.85 097 | 094 | 0.88
PIQUE 0.93 0.90 0.94 | 0.90 | 0.90

TABLE I LIVE DATABASE
SROCC
Algorithm | JP2K | JPEG WN Blur All
QAC 0.87 0.91 086 | 0.85 | 0.86

NIQE 0.89 0.86 0.81 0.87 | 0.86
PIQUE 0.87 0.86 091 | 0.86 | 0.84

Pearson CC
QAC 0.90 0.94 0.87 | 0.84 | 0.88
NIQE 0.90 0.91 0.81 0.89 | 0.86

PIQUE 0.90 0.88 093 | 088 | 0.87

TABLE II. CSIQ DATABASE
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TABLE V.

SROCC
Algorithm | JP2K | JPEG | WN | Blur All
QAC 0.89 0.90 071 | 0.85 | 0.87
NIQE 0.89 0.88 0.78 | 0.82 | 0.80
PIQUE 0.93 0.83 0.78 | 0.85 | 0.85
Pearson CC
QAC 0.88 0.92 0.72 | 0.85 | 0.84
NIQE 0.90 0.92 0.77 | 0.84 | 0.80
PIQUE 0.93 0.87 0.78 | 0.84 | 0.86
TABLE IIL TID DATABASE
SROCC
Distortion/Ty; | JP2K | JPEG | WN | Blur All
0.05 0.92 0.88 096 | 092 | 0.90
0.1 0.93 0.89 096 | 092 | 091
0.15 0.92 0.89 096 | 091 | 091
0.2 0.89 0.88 096 | 0.86 | 0.88
0.25 0.84 0.86 096 | 0.82 | 0.84
0.3 0.76 0.83 096 | 0.81 | 0.79
TABLE IV. SROCC SCORES FOR LIVE DATABASE WITH
VARYING Ty,
SROCC
Block Size | JP2K | JPEG | WN | Blur All
16x 16 0.93 0.89 0.96 | 092 | 091
32x32 0.92 0.89 0.94 | 093 | 0.88
48x48 0.90 0.87 0.93 | 093 | 0.83
64 <64 0.89 0.85 0.90 | 093 | 0.81
80 80 0.87 0.81 0.88 | 0.92 | 0.78
96 %96 0.88 0.81 0.84 | 091 | 0.76

SROCC SCORES FOR LIVE DATABASE WITH
VARYING BLOCK SIZE

Method | QAC | NIQE | PIQUE | DIVINE | BLINDS-I |
[TimeGeo | 02 | 08 | 09 | 60 | 140 |
TABLE VL.  MATLAB EXECUTION TIME
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