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Abstract—Surveillance radars form the first line of defense
in border areas. But due to highly uneven terrains, there are
pockets of vulnerability for the enemy to move undetected till
they are in the blind range of the radar. This class of targets are
termed the ’pop up’ targets. They pose a serious threat as they
can inflict severe damage to life and property. Blind ranges occur
by way of design in pulsed radars. To minimize the blind range
problem, multistatic radar configuration or dual pulse trans-
mission methods were proposed. Multistatic radar configuration
is highly hardware intensive and dual pulse transmission could
only reduce the blind range, not eliminate it. In this work we
propose, elimination of blind range using deep learning based
video tracking for mono static surveillance radars. Since radars
operate in deploy and forget mode, visual system must also
operate in a similar way for added advantage. Deep Learning
paved way for automatic target detection and classification.
However, a deep learning architecture is inherently not capable of
tracking because of frame to frame independence in processing.
To overcome this limitation, we use prior information from past
detections to establish frame to frame correlation and predict
future positions of target using a method inspired from CFAR
in a parallel channel for target tracking.

Index Terms—Deep Learning, CFAR , Radar, Video Tracking
, Blind Range

I. INTRODUCTION

Mono static radars are deployed in border areas with in-
accessible terrains for territory defense. In certain locations
the terrains are extremely uneven which camouflages the pop
up targets. This class of targets are extremely dangerous as
they move undetected until they are in blind range of radar
and can inflict severe damage to life and property. In such
hostile conditions one cannot afford blind ranges as they form
pockets of vulnerability in the surveillance network. Presently
to minimize blind range, dual pulse transmission technique is
used as shown in Fig 1. This method uses two interleaved
pulses of different durations to cater for short range and
long range targets separately. This process reduces the blind
range (DR1<DR2) but does not eliminate it completely. For
such close range processing video tracking provides a feasible
alternative. Before deep learning, centroid processing [1] and
correlation processing [2] were the two prominent techniques
used for video tracking. Centroid processing is a purely data
driven approach and has no information regarding the features
of the object like shape and size. It is also highly sensitive
to background data. If the background data is stronger than
the target data, the algorithm latches onto background clutter

Fig. 1: Radar Blind Range (DR1 < DR2)

leading to track loss. The algorithm can not be applied to
multi target scenario and the lost track can not be resuscitated
without manual intervention.

Correlation processing requires a template to match the
target in the incoming frames which is usually not available
upfront. Both the methods are not suitable to work in deploy
and forget mode as required for supplementing radar process-
ing. With the advent of deep learning a new era of automated
detection and feature extraction evolved. It completely re-
moved manual intervention once the network is trained. Deep
learning can be implemented in ”deploy and forget” mode and
hence can augment radar processing. However, there are two
key issues that plagued deep learning for deploying in custom
detection and tracking applications. First is the unavailability
of labeled training data for custom targets and second is
the frame to frame independence. This independent frame
processing makes it diffcult for tracking using previous frame
information. Most of the literature on CNNs published work
for very generic data sets and the networks are not targeted
for applications related to surveillance video processing. For
our application we collected sample data set to mimic close
range target movement as seen by radar on an Indian city street
from a height of 25 meters with slant range of targets varying
between 100-800 meters.

In this work we addressed the following problems:
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(a) Original Image 1 (b) Original Image 2 (c) Original Image 3

(d) YOLO Image 1 (e) YOLO Image 2 (f) YOLO Image 3

(g) Mask RCNN Image 1 (h) Mask RCNN Image 2 (i) Mask RCNN Image 3

Fig. 2: Performance of existing CNNs. Figures [a-c] show the original image to be processed for targets. Figures [d-e] show
detection performance of YOLO network and figures [g-i] show the performance of MRCNN network on input images. It can
be observed that the networks (using pre trained weights) are predicting false targets and require fine tuning of the weights.
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Fig. 3: Range mapping for proposed method. Blind range is
grip mapped and stored in a look up table for range estimation.

• Multi target detection in blind range of radar using
auxillary video channel with deep learning.

• Selective target detection using custom CNN.
• CFAR based target tracking in videos.

The rest of the paper is organized as follows. Section II briefly
revises related work in this area. In section III we introduce
the problem statement and discuss proposed solution with
results. Section IV concludes our work with a brief on our
plan for future research followed by references.

II. RELATED WORK

A. Classical Video Tracking

In a generic video tracking problem, we know the initial
position of the target in the image. From that information we
have to devise a technique to automatically detect and track the
target in subsequent frames. This seemingly simple problem
becomes extremely challenging because of real time issues
such as orientation of the target, occlusions, movement of the
target and relative scale variations. Earlier tracking algorithms
used centroid of the image as a reference parameter to predict
the position of target in next frame. This is termed as centroid
tracking [1]. This method relies only on data and not on
features of the target which made the algorithm unreliable.
To include features of the target into account for detection,
correlation processing [2] or template matching was proposed.
This method used a reference template or apperance model of
the target which was compared with the input data in sliding
window fashion storing the correlation coefficient for each
pixel shift in a vector. Several variations of this method were
proposed in the literature [3] [4] [5] [6]. These methods are
vulnerable to scaling, illumination changes and occlusions.
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(a) Frame 5 (b) Frame 8 (c) Frame 9 (d) Frame 10

(e) Frame 817 (f) Frame 818 (g) Frame 819 (h) Frame 820

(i) Frame 1076 (j) Frame 1077 (k) Frame 1078 (l) Frame 1079

Fig. 4: CFAR tracking:Blue Box -Target Detected and Acquired, Red Box- Coasted bounding box waiting for reacquiring the
target

Fig. 5: CFAR tracking - X coordinate

B. Deep Learning based Video Tracking

With deep learning a new era of automatic target detection
and classification evolved. However, most of the work is
concentrated on very short range automotive radars [7] [8] and
Synthetic Apertuere Radars [9] [10]. CNNs have significantly
improved the state of the art in the applications of object
detection and classification [11] [12] [13]. These networks
are designed in layers with each layer capturing the infor-
mation from input frame at different level of abstraction. The
breakthrough in CNNs was the absence of hand crafted feature
description. The network automatically learns the information
from the input image and in the final layer converts the infor-
mation into a feature vector which is then processed by fully

Fig. 6: CFAR tracking - Y coordinate

connected neural network (FCN). By virtue of design CNNs
were capable only for detection and localization. Tracking an
object required previous state information of the target which
is not available in CNN processing.

C. Radar Tracking and Data Fusion

Target tracking based on Kalman filters [14] [24] is well
established area. The works in [15] [16] covers the topic
in great detail for the interested reader. Some of the recent
works are mentioned in [17] [18] [19]. Hou [20] presented a
similar method of fusing range information from radar data
with orientation information (azimuth, elevation) from image
for target tracking. Golrokh et.al [21] presents the IR data
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fusion with radar data with similar processing as [20] towards
the application of avian monitoring system. They use ba-
sic image processing techniques like background subtraction,
thresholding, noise suppression, tracking and feature extraction
for avian tracking. Wang [22] proposed active contour tracking
fused with MMW radar for vehicle detection and tracking.

All the above works used optical sensors to augment radar
processing and improve target detection and tracking. The
range considered is common for both the sensors and none of
the works addressed the problem of blind range. The proposed
work differs from the above works, as the range considered by
the sensors in our case is mutually exclusive. We used radar
output for open range processing and optical sensor output
for blind range processing in monostatic radars using deep
learning.

III. PROPOSED METHODOLOGY

A. Problem Statement

Our objective is to design an automated target tracker (ATT)
to detect and track targets in blind range of radar. Figure 3
shows the proposed method of operation. Target 1 is in the
blind range of radar and is processed in optical channel. The
area covered by optical channel is grid mapped. Each pixel
location is translated to range and stored in a look up table.
Targets 2 and 3 are detected by radar and complete data is
generated every scan by fusing data from both the channels. To
the best of our knowledge this problem has not been addressed
in the literature, the proposed CNN based solution with CFAR
processing is the first if its kind. It has two fold advantages.

(a) For radar surveillance applications, we can train the
CNN extensively to track the targets for most of the possible
scenarios.

(b) For tracking applications we can deploy custom trained
CNNs to track specific object of interest using CFAR.

B. Proposed solution and Results

As mentioned earlier, in the deep learning method every
frame is a new input and the network only detects the object
in the current frame. The next frame is an entirely new input
with no information available from the previous frame. But to
track a target, past observations have to be taken into account.
So we used a parallel channel to store this information for
prediction. We used this information to create a track vector
which stores the target co-ordinates in every frame and predicts
the next probable position of target in subsequent frame
using the CFAR technique [23]. In this work we used CA
CFAR technique with only prior window for tracking. With
the physical limitations on target manouverability (excluding
passing through occlusions), we can model the movement of
the bounding box co-ordinates as uniform distribution. In our
case we used the target co-ordinates as range cell information
rather than their strengths and predicted the next target location
by uniformly averaging the past ’n’ measurements. There is
a bound set on the measured co-ordinates based on target
parameters which is used to classify the observation as valid
or invalid.

Fig. 7: Training Loss

Figure 2 shows the performance of YOLO and Mask
RCNN. It can be observed that the networks are classifying
detected targets wrongly and in some frames predicting false
targets. This is because the weights we used are trained for
generic datasets where the targets have been viewed from
a different perspective. The present dataset mimics radar
surveillance as seen from a height of 25 meters above ground.
To work with this data we have designed custom CNNs as
mentioned in Table 1. For specific target tracking we only
used regression head for bounding box prediction. Bounding
box regression attempts to learn a function to map proposal
box (P ) to ground truth (G). Ĝ is the predicted bound-
ing box. CFAR tries to predict the center of the predicted
bounding box (Ĝ). Each box is specified by four coordinates
(x, y, w, h)where(x, y) are the top left coordinates of Ĝ and
(w, h) are width and height of Ĝ respectively. We use mean
square error (MSE,eq-9) cost function with Adam optimization
[25]for bounding box regression. Each CNN differs in a few
layers and the performance of the CNNs against training and
validation losses are shown in Figs 7-8. After designing the
CNN we added a parallel CFAR channel for tracking the
targets. The tracking performance of CFAR is shown in Fig
4. To test the performance of the proposed CFAR tracking
we have introduced intentional frame jumps in the input
video. It can be observed that the predicted track window
maintains its course in subsequent images. In figure 4(e-h)
the algorithm re-aquires the target when the co-ordinates are
within the predefined bounds of CFAR. Figs 4(i-l) show that
the bound is user configurable and it can be observed that the
window acquires the target at a significant distance if properly
designed. The performance of CFAR on centroid co-ordinates
is shown in Figs 5-6. It can observed that abrupt target jumps
are ignored and the data is smoothed to maintain the target
track. The target is successfully reaquired after coasting thus
improving tracking efficiency.

MSE =
1

n

n∑
t=1

(Gt − Ĝt)
2 (1)
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TABLE I: Some of the configurations considered

Architecture
CNN 1 - proposed CNN

Conv(32,3,3)->ReLU->Conv(64,5,5)->ReLU ->Max pool-> Dropout -> Conv(32,5,5)->ReLU->Conv(32,3,3)->
ReLU->Dense(64)->ReLU->Dense(4)

CNN 2
Conv(32,3,3)->ReLU->Conv(64,5,5)->ReLU -> Max pool-> Dropout -> Conv(32,5,5)->ReLU->Batch Norm ->

Conv(64,3,3)->ReLU->Dense(64)->ReLU->Dense(4)
CNN 3

Conv(32,3,3)->ReLU->Conv(64,5,5)->ReLU -> Max pool-> Dropout -> Conv(32,5,5)->ReLU-> Batch Norm ->
Conv(32,3,3)->ReLU-> Conv(64,5,5)-> ReLU->Max pool(2,2)-> Dropout->Dense(64)->ReLU->Dense(4)

CNN 4
Conv(32,3,3)->ReLU->Conv(64,5,5)->ReLU ->Max pool-> Dropout-> Conv(32,5,5)->ReLU-> Batch Norm ->

Conv(32,3,3)->ReLU->Conv(64,5,5)->ReLU-> Max pool-> Dropout-> Dense(64)->ReLU-> ->Dense(32)->
ReLU->Dense(4)

aMax Pool = maxpool(2,2), Dropout = dropout(0.5)
bBold Font indicates change w.r.t above layer configuration

Fig. 8: Validation Loss

IV. CONCLUSION

In this work we have presented a CNN based architecture
to detect and track targets of interest in blind range of radar.
The algorithm can be used in addition to radar processing
to cater for complete range processing. We have used CFAR
processing for target tracking with custom threshold setting
to cater for occlusions in the field. Presently the algorithm is
proved with RGB data and we are presently acquiring IR data
for testing the algorithm.
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