68 research outputs found

    Facile method to synthesize magnetic iron oxides/TiO2 hybrid nanoparticles and their photodegradation application of methylene blue

    Get PDF
    Many methods have been reported to improving the photocatalytic efficiency of organic pollutant and their reliable applications. In this work, we propose a facile pathway to prepare three different types of magnetic iron oxides/TiO2 hybrid nanoparticles (NPs) by seed-mediated method. The hybrid NPs are composed of spindle, hollow, and ultrafine iron oxide NPs as seeds and 3-aminopropyltriethyloxysilane as linker between the magnetic cores and TiO2 layers, respectively. The composite structure and the presence of the iron oxide and titania phase have been confirmed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectra. The hybrid NPs show good magnetic response, which can get together under an external applied magnetic field and hence they should become promising magnetic recovery catalysts (MRCs). Photocatalytic ability examination of the magnetic hybrid NPs was carried out in methylene blue (MB) solutions illuminated under Hg light in a photochemical reactor. About 50% to 60% of MB was decomposed in 90 min in the presence of magnetic hybrid NPs. The synthesized magnetic hybrid NPs display high photocatalytic efficiency and will find recoverable potential applications in cleaning polluted water with the help of magnetic separation

    Preparation and characterization of spindle-like Fe3O4 mesoporous nanoparticles

    Get PDF
    Magnetic spindle-like Fe3O4 mesoporous nanoparticles with a length of 200 nm and diameter of 60 nm were successfully synthesized by reducing the spindle-like α-Fe2O3 NPs which were prepared by forced hydrolysis method. The obtained samples were characterized by transmission electron microscopy, powder X-ray diffraction, attenuated total reflection fourier transform infrared spectroscopy, field emission scanning electron microscopy, vibrating sample magnetometer, and nitrogen adsorption-desorption analysis techniques. The results show that α-Fe2O3 phase transformed into Fe3O4 phase after annealing in hydrogen atmosphere at 350°C. The as-prepared spindle-like Fe3O4 mesoporous NPs possess high Brunauer-Emmett-Teller (BET) surface area up to ca. 7.9 m2 g-1. In addition, the Fe3O4 NPs present higher saturation magnetization (85.2 emu g-1) and excellent magnetic response behaviors, which have great potential applications in magnetic separation technology

    Fabrication of TiO 2

    Get PDF
    The TiO2 photoelectrodes fabricated on the substrate of Ti foils by Ti ions implantation and subsequent annealing at different temperatures were applied for water splitting. The size of TiO2 nanoparticles increased with annealing temperatures, and the GIXRD patterns and Raman spectra demonstrate that the phase of TiO2 turns to rutile at high temperature. The photoelectrochemical (PEC) and X-ray photoelectron spectroscopy (XPS) spectra of the valence band demonstrate that the samples annealed at 400 and 500°C show the n-type property. The sample annealed at 600°C shows the weak p-type TiO2 property. For the sample annealed at 700°C, the negative photocurrent is main, which mainly performs the p-type property of TiO2. The IPCE values indicate that the absorption edges are red shifted with the increase of annealing temperatures

    Reconversión laboral del sector agropecuario hacia el turismo. Desafíos para la Patagonia chilena

    Get PDF
    [EN] The development of tourism can help to diversify the productive matrix and reduce rural depopulation. This study analyzes the possibility of agricultural worker participation in the tourism sector in rural areas of Chilean Patagonia. Based on the 2017 CASEN survey, data matching and estimation of logit model are conducted to evaluate the probability of agricultural worker reconversion. The results indicate that the proportion of agricultural workers who can move to tourism is low. However, women and individuals with post-secondary education are more likely to be reconverted.[ES] La actividad turística puede ayudar a diversificar la matriz productiva y reducir el despoblamiento rural. Este estudio analiza la posibilidad de participación de trabajadores agropecuarios en el sector turismo en las zonas rurales de la Patagonia Chilena. Usando la encuesta CASEN del año 2017, se realiza un proceso de emparejamiento de datos (matching) y la estimación de un modelo logit para evaluar la probabilidad de reconversión laboral. Los resultados indican que hay una baja proporción de trabajadores que puedan transitar hacia el sector turismo. Sin embargo, las mujeres y los individuos con estudios postsecundarios tienen mayores probabilidades de reconversión.Este trabajo está enmarcado dentro del proyecto de investigación “La Vocación Productiva, el Nivel Educativo y la Funcionalidad del Centro Emisor y Receptor como Factores Explicativos de la Conmutación Inter e Intrarregional en la Región de los Andes Australes de la Patagonia Chilena”, financiado por CONICYT (Proyecto Fondecyt Número 1160196), por lo que los autores agradecen dichos aportes.Mancilla, C.; Ferrada, LM.; Soza-Amigo, S. (2019). Labour reconversion of the agricultural sector towards tourism. Challenges for Chilean Patagonia. Economía Agraria y Recursos Naturales - Agricultural and Resource Economics. 19(1):175-194. https://doi.org/10.7201/earn.2019.01.0917519419

    Transcriptomic response for revealing the molecular mechanism of oat flowering under different photoperiods

    Get PDF
    Proper flowering is essential for the reproduction of all kinds of plants. Oat is an important cereal and forage crop; however, its cultivation is limited because it is a long-day plant. The molecular mechanism by which oats respond to different photoperiods is still unclear. In this study, oat plants were treated under long-day and short-day photoperiods for 10 days, 15 days, 20 days, 25 days, 30 days, 40 days and 50 days, respectively. Under the long-day treatment, oats entered the reproductive stage, while oats remained vegetative under the short-day treatment. Forty-two samples were subjected to RNA-Seq to compare the gene expression patterns of oat under long- and short-day photoperiods. A total of 634-5,974 differentially expressed genes (DEGs) were identified for each time point, while the floral organ primordium differentiation stage showed the largest number of DEGs, and the spikelet differentiation stage showed the smallest number. Gene Ontology (GO) analysis showed that the plant hormone signaling transduction and hormone metabolism processes significantly changed in the photoperiod regulation of flowering time in oat. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Mapman analysis revealed that the DEGs were mainly concentrated in the circadian rhythm, protein antenna pathways and sucrose metabolism process. Additionally, transcription factors (TFs) involved in various flowering pathways were explored. Combining all this information, we established a molecular model of oat flowering induced by a long-day photoperiod. Taken together, the long-day photoperiod has a large effect at both the morphological and transcriptomic levels, and these responses ultimately promote flowering in oat. Our findings expand the understanding of oat as a long-day plant, and the explored genes could be used in molecular breeding to help break its cultivation limitations in the future

    Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island

    Get PDF
    In order to overcome the low utilization ratio of solar light and high electron-hole pair recombination rate of TiO(2), the triangular Ag nanoparticle island is covered on the surface of the TiO(2) thin film. Enhancement of the photocatalytic activity of the Ag/TiO(2) nanocomposite system is observed. The increase of electron-hole pair generation is caused by the enhanced near-field amplitudes of localized surface plasmon of the Ag nanoparticles. The efficiently suppressed recombination of electron-hole pair caused by the metal-semiconductor contact can also enhance the photocatalytic activity of the TiO(2) film

    Facile Fabrication of Ultrafine Hollow Silica and Magnetic Hollow Silica Nanoparticles by a Dual-Templating Approach

    Get PDF
    The development of synthetic process for hollow silica materials is an issue of considerable topical interest. While a number of chemical routes are available and are extensively used, the diameter of hollow silica often large than 50 nm. Here, we report on a facial route to synthesis ultrafine hollow silica nanoparticles (the diameter of ca. 24 nm) with high surface area by using cetyltrimethylammmonium bromide (CTAB) and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as co-templates and subsequent annealing treatment. When the hollow magnetite nanoparticles were introduced into the reaction, the ultrafine magnetic hollow silica nanoparticles with the diameter of ca. 32 nm were obtained correspondingly. Transmission electron microscopy studies confirm that the nanoparticles are composed of amorphous silica and that the majority of them are hollow

    Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    Get PDF
    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed

    Effects of Thermal Shock on the Microstructures and Mechanical Properties Evolution of 310S Welded Joints at 1100 °C

    No full text
    In order to reveal the effects of the glass solidification bottling process of high-level liquid radioactive wastes on the welded joints of containers, the microstructure evolution and mechanical properties of 310S stainless steel welded joints were investigated. For this purpose, samples were heat-treated in a resistance furnace at 1100 °C, with two groups of samples being thermally shocked and heat-treated in the furnace. The results indicated that the grain-size distribution changed from unimodal to bimodal for the thermally shocked samples, which was caused by abnormal growth due to the grain growth driving force during recrystallization. Spinel oxide ((Fe, Cr, Ni)3O4) and Cr2O3 were the main oxides at 1100 °C. The dislocations almost disappeared and needle-like structures that were rich in N and Cr formed in the welded joints after being thermally shocked. The tensile properties of the thermally shocked welded joints showed decreases in yield strength and plasticity. The fracture morphologies of the samples heated in the furnace and the as-welded samples presented with dimples. However, the morphologies of the fracture surfaces of the thermally shocked samples presented large numbers of secondary cracks and smooth characteristics

    Facile method to synthesize magnetic iron oxides/TiO<sub>2 </sub>hybrid nanoparticles and their photodegradation application of methylene blue

    No full text
    <p>Abstract</p> <p>Many methods have been reported to improving the photocatalytic efficiency of organic pollutant and their reliable applications. In this work, we propose a facile pathway to prepare three different types of magnetic iron oxides/TiO<sub>2 </sub>hybrid nanoparticles (NPs) by seed-mediated method. The hybrid NPs are composed of spindle, hollow, and ultrafine iron oxide NPs as seeds and 3-aminopropyltriethyloxysilane as linker between the magnetic cores and TiO<sub>2 </sub>layers, respectively. The composite structure and the presence of the iron oxide and titania phase have been confirmed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectra. The hybrid NPs show good magnetic response, which can get together under an external applied magnetic field and hence they should become promising magnetic recovery catalysts (MRCs). Photocatalytic ability examination of the magnetic hybrid NPs was carried out in methylene blue (MB) solutions illuminated under Hg light in a photochemical reactor. About 50% to 60% of MB was decomposed in 90 min in the presence of magnetic hybrid NPs. The synthesized magnetic hybrid NPs display high photocatalytic efficiency and will find recoverable potential applications in cleaning polluted water with the help of magnetic separation.</p
    corecore