14 research outputs found

    Synergistic Effects of Apigenin and Paclitaxel on Apoptosis of Cancer Cells

    Get PDF
    BACKGROUND: It was well known that the clinical use of chemotherapeutic drugs is restricted by severe adverse reactions and drug resistances. Thus it is necessary to figure out a strategy to increase the specific anti-tumor efficiency of chemotherapeutic drugs. Apigenin, a kind of flavonoids, has been reported to possess anticancer activities with very low cytotoxicity to normal tissue. METHODOLOGY/PRINCIPAL FINDINGS: Our results from cell viability assay, western-blots and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay demonstrated the synergistic pro-apoptotic effects of a low dose of apigenin and paclitaxel in human cancer cell lines. To analyze the underlying mechanism, we examined reactive oxygen species (ROS) staining after cells were treated with a combination of apigenin and paclitaxel, or each of them alone. Data from flow-cytometry showed that superoxides but not reduction of peroxides accumulated in HeLa cells treated with apigenin or a combination of apigenin and paclitaxel. Apigenin and paclitaxel-induced HeLa cell apoptosis was related to the level of ROS in cells. We further evaluated activity and protein level of superoxide dismutase (SOD). Apigenin significantly inhibited SOD activity but did not alter the SOD protein level suggesting that apigenin promoted ROS accumulation through suppressing enzyme activity of SOD. Addition of Zn(2+), Cu(2+) and Mn(2+) to cell lysates inhibited apigenin's effects on SOD activity. At the same time, data from caspase-2 over-expression and knocked-down experiments demonstrated that caspase-2 participated in apigenin and paclitaxel-induced HeLa cell apoptosis. CONCLUSIONS/SIGNIFICANCE: Taken together, our study demonstrated that apigenin can sensitize cancer cells to paclitaxel induced apoptosis through suppressing SOD activity, which then led to accumulation of ROS and cleavage of caspase-2, suggesting that the combined use of apigenin and paclitaxel was an effective way to decrease the dose of paclitaxel taken

    Maize Growth Promotion by Inoculation with an Engineered Ammonium-Excreting Strain of Nitrogen-Fixing Pseudomonasstutzeri

    No full text
    Diazotroph mutants designed using metabolic engineering to excrete surplus ammonium were used to enhance nitrogen fixation and plant growth, as the levels of nitrogen fixation attained with diazotrophs are insufficient for the plant’s needs. In this study, wild-type (A1501) and engineered ammonium-excreting (1568/pVA3) strains of nitrogen-fixing Pseudomonas stutzeri strains were tested in vitro based on plant growth-promoting traits, such as phosphate solubilization ability, indole acetic acid (IAA) production and nitrogenase activities, as well as ammonium excretion as affected by mannitol-mediated osmotic stress. The maize plant growth-promoting effect of the A1501 and 1568/pVA3 strains was evaluated in pots and in the field, and the 15N-dilution technique was employed to assess the proportion of plant nitrogen derived from nitrogen fixation. The results demonstrate that the 1568/pVA3 strain displayed higher IAA production and nitrogenase activity than A1501 and released significant quantities of ammonium. After 50 days, in all of the conditions assayed, maize inoculated with 1568/pVA3 accumulated more plant biomass (3.3% on average) and fixed N (39.4% on average) than plants inoculated with A1501. In the field experiment, the grain yield of maize was enhanced by 5.6% or 5.9% due to the inoculation of seeds with 1568/pVA3 in the absence or presence of exogenous N fertilizer, respectively. Therefore, the engineered P. stutzeri strain tested in the greenhouse and field was shown to perform better than the wild-type strain with respect to maize growth parameters and biologically fixed nitrogen

    Transcriptional regulation of human abraxas brother protein 1 expression by yin yang 1

    No full text
    Abraxas brother protein 1 (ABRO1) is a subunit of the deubiquitinating enzyme BRCC36-containing isopeptidase complex and plays important roles in cellular responses to stress by interacting with its binding partners, such as ubiquitin-specific peptidase 7, p53, activating transcription factor 4, THAP-domain containing 5, and serine hydroxymethyltransferase. However, the transcriptional regulation of ABRO1 remains unexplored. In this study, we identified and characterized the core regulatory elements of the human ABRO1 gene and mapped them to the ABRO1 promoter region. Additionally, 5′ rapid amplification of cDNA ends revealed that the transcriptional start site (TSS) was located −13 bp upstream from the start codon. Reporter gene, chromatin immunoprecipitation, and electrophoretic mobility shift assays demonstrated that ABRO1 transcription was regulated through cis-acting elements located in the region −89 to −59 bp upstream of the ABRO1 TSS and that these elements were targeted by yin yang 1 transcription factor (YY1). Moreover, YY1 overexpression increased human ABRO1 mRNA and protein expression, and small-interfering RNA-mediated downregulation of YY1 attenuated ABRO1 expression. These results suggested that YY1 positively regulated human ABRO1 expression by binding to cis-acting elements located in the ABRO1 TSS.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Glycerol kinase enhances hepatic lipid metabolism by repressing nuclear receptor subfamily 4 group A1 in the nucleus

    No full text
    Glycerol kinase (GYK) plays a critical role in hepatic metabolism by converting glycerol to glycerol 3-phosphate in an ATP-dependent reaction. GYK isoform b is the only glycerol kinase present in whole cells, and has a non-enzymatic moonlighting function in the nucleus. GYK isoform b acts as a co-regulator of nuclear receptor subfamily 4 group A1 (NR4A1) and participates in the regulation of hepatic glucose metabolism by protein–protein interaction with NR4A1. Herein, GYK expression was found to upregulate the expression of NR4A1-mediated lipid metabolism-related genes (SREBP1C, FASN, ACACA, and GPAM) in HEK293T and L02 cells, and in mouse in vivo studies. GYK expression increased blood levels of cholesterol, triglyceride, and high-density lipoprotein cholesterol, but not low-density lipoprotein cholesterol levels. It enhanced the transcriptional activity of Nr4a1 target genes by negatively cooperating with NR4A1 and its enzymatic activity or by other undefined moonlighting functions. This enhancement was observed in both normal and diabetic mice. We also found a feed-forward regulation loop between GYK and NR4A1, serving as part of a GYK-NR4A1 regulatory mechanism in hepatic metabolism. Thus, GYK regulates the effect of NR4A1 on hepatic lipid metabolism in normal and diabetic mice, partially through the cooperation of GYK and NR4A1.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    The Sigma Factor AlgU Regulates Exopolysaccharide Production and Nitrogen-Fixing Biofilm Formation by Directly Activating the Transcription of pslA in Pseudomonas stutzeri A1501

    No full text
    Pseudomonas stutzeri A1501, a plant-associated diazotrophic bacterium, prefers to conform to a nitrogen-fixing biofilm state under nitrogen-deficient conditions. The extracytoplasmic function (ECF) sigma factor AlgU is reported to play key roles in exopolysaccharide (EPS) production and biofilm formation in the Pseudomonas genus; however, the function of AlgU in P. stutzeri A1501 is still unclear. In this work, we mainly investigated the role of algU in EPS production, biofilm formation and nitrogenase activity in A1501. The algU mutant ΔalgU showed a dramatic decrease both in the EPS production and the biofilm formation capabilities. In addition, the biofilm-based nitrogenase activity was reduced by 81.4% in the ΔalgU mutant. The transcriptional level of pslA, a key Psl-like (a major EPS in A1501) synthesis-related gene, was almost completely inhibited in the algU mutant and was upregulated by 2.8-fold in the algU-overexpressing strain. A predicted AlgU-binding site was identified in the promoter region of pslA. The DNase I footprinting assays indicated that AlgU could directly bind to the pslA promoter, and β-galactosidase activity analysis further revealed mutations of the AlgU-binding boxes drastically reduced the transcriptional activity of the pslA promoter; moreover, we also demonstrated that AlgU was positively regulated by RpoN at the transcriptional level and negatively regulated by the RNA-binding protein RsmA at the posttranscriptional level. Taken together, these data suggest that AlgU promotes EPS production and nitrogen-fixing biofilm formation by directly activating the transcription of pslA, and the expression of AlgU is controlled by RpoN and RsmA at different regulatory levels

    土壤氮、盐浓度对盐角草(Salicornia europaea)生长发育及氮素吸收的影响/Effects of Soil Nitrogen and Salt Concentration on Growth and Nitrogen Uptake of Salicornia europaea[J]

    No full text
    以盐生植物盐角草(Salicornia europaea)为材料,以NaCl模拟不同盐度环境,盆栽试验了氮(0.3 g· kg-1,N1;0.6 g· kg-1,N2;1.2 g· kg-1,N3;2.4g· kg-1,N4)、盐(2.5 g·kg-1,S1;5.0g·kg-1,S2;7.5 g·kg-1,S3)处理对其生长发育及氮素吸收利用的影响.结果表明:(1)不同盐度下施氮均可以显著促进盐角草的生长,地上部干质量均在N2处理下达到最大,而株高均在N1时达到最高,且施氮对盐角草生长的影响与盐度有关;(2)不同盐度环境下施氮所能达到的最高干物质产量及最高施氮限量不同,表现为S3<S1<S2,随着施氮量的增加,氮素生产力与氮素农学利用效率均表现出下降的趋势;(3)施氮显著增加了盐角草各器官含氮量及氮吸收量,同一施氮水平下盐角草各器官含氮量及氮吸收量均表现为同化枝>茎>根;(4)同一施氮水平下,随着盐度的增加,盐角草同化枝渗透势显著下降,同一盐度环境下,随着施氮量的增加,同化枝渗透势呈现出下降趋势,渗透调节能力增大;(5)3个盐度环境下,施氮均增加盐角草同化枝光合色素含量,从而提高光合效率,增强其对盐渍环境的适应能力
    corecore