27 research outputs found

    Two Efficient and Regulatory Confidential Transaction Schemes

    Get PDF
    With the development of Bitcoin, Ethereum and other projects, blockchain has been widely concerned with its outstanding characteristics such as non-centralization, collective maintenance, openness and transparency. Blockchain has been widely used in finance, logistics, copyright and other fields. However, as transactions are stored in plaintext in the blockchain for public verification, the privacy of users is not well guaranteed such that many financial applications can not be adopted widely. How to securely and economically protect the privacy of transactions is worth further research. In this paper, we have proposed two efficient and regulatory confidential transaction schemes using homomorphic encryption and zero-knowledge proof. ERCO, the first scheme, turns the standard ElGamal algorithm to be additively homomorphic and expands it into four ciphertexts such that (m,r)(m,r) in the transaction can be decrypted. Its security can be reduced to DDH assumption and the transaction size is less. PailGamal, the second scheme, is based on the combination of Paillier and ElGamal algorithms. Its security can be reduced to DDH assumption and it empowers regulators greater powers to obtain transaction-related specific content. In contrast to other ElGamal-based schemes, PailGamal makes any token amount directly decrypted without calculating a discrete logarithm problem. As any (m,r)(m,r) in transactions can be decrypted directly, game theory is applied to further reduce transaction size

    Comparison between variable displacement and variable speed compressors for electric vehicle heat pumps

    No full text
    Recent developments in electric vehicles have heightened the need for high-efficiency heat pump technology to improve cruising range and cabinet thermal comfort. As the key component for a heat pump system, compressor has a significant impact on heat pump system performance. In this work, a numerical model of a heat pump system consisting of a variable displacement compressor (VDC) model, a variable speed compressor (VSC) model, and a heat exchanger model is presented to compare the two major types of compressor. The simulation is executed across a diverse array of conditions to assess the performance disparity between two variants of compressors, particularly in challenging environments. The proposed model is validated based on the experimental data from a heat pump test rig which compressor section can be replaced with a prototype VDC or VSC based on validation demands. Overall, the modeling results demonstrate a favorable alignment with the measurements. The simulated power input of VDC under heat and cooling mode has a mean absolute percentage error (MPAE) of 4.4% and 6.0%, respectively, while the MAPEs for VSC under heating and cooling modes are 3.2%, and 4.5%. The modelling results indicate that the VDC system shows superior performance in specific mass flow rate, compressor power input, and system efficiency, especially at part load conditions

    Analysis of Key Elements of Truss Structures Based on the Tangent Stiffness Method

    No full text
    In recent years, the topic of progressive structural collapse has received more attention around the world, and the study of element importance is the key to studying progressive collapse resistance. However, there are many elements in truss structures, making it difficult to predict their importance. The global stiffness matrix contains the specific information of the structure and singularity of the matrix can reflect the safety status of the structure, so it is useful to evaluate the key elements based on the global stiffness matrix for truss structures. In this paper, according to the tangent stiffness-based method for the element importance, the square pyramid grid was chosen as an example, and the distribution rules of key elements under different support conditions, stiffness distributions, and geometric parameters were studied. Then, three common symmetric grid forms, i.e., diagonal square pyramid grids, biorthogonal lattice grids, and biorthogonal diagonal lattice grids, were selected to investigate their importance indices of elements. The principle in this work can be utilized in progressive collapse analysis and safety assessment for spatial truss structures

    Mutation of S461, in the GOLGA3 phosphorylation site, does not affect mouse spermatogenesis

    No full text
    Background Golgin subfamily A member 3 (Golga3), a member of the golgin subfamily A, is highly expressed in mouse testis. The GOLGA3 protein, which contains eight phosphorylation sites, is involved in protein transport, cell apoptosis, Golgi localization, and spermatogenesis. Although it has been previously reported that nonsense mutations in Golga3 cause multiple defects in spermatogenesis, the role of Golga3 in the testis is yet to be clarified. Methods Immunofluorescence co-localization in cells and protein dephosphorylation experiments were performed. Golga3 S461L/S461Lmice were generated using cytosine base editors. Fertility tests as well as computer-assisted sperm analysis (CASA) were then performed to investigate sperm motility within caudal epididymis. Histological and immunofluorescence staining were used to analyze testis and epididymis phenotypes and TUNEL assays were used to measure germ cell apoptosis in spermatogenic tubules. Results Immunofluorescence co-localization showed reduced Golgi localization of GOLGA3S465L with some protein scattered in the cytoplasm of HeLa cells .In addition, protein dephosphorylation experiments indicated a reduced band shift of the dephosphorylated GOLGA3S465L, confirming S461 as the phosphorylation site. Golga3 is an evolutionarily conserved gene and Golga3S461L/S461Lmice were successfully generated using cytosine base editors. These mice had normal fertility and spermatozoa, and did not differ significantly from wild-type mice in terms of spermatogenesis and apoptotic cells in tubules. Conclusions Golga3 was found to be highly conserved in the testis, and GOLGA3 was shown to be involved in spermatogenesis, especially in apoptosis and Golgi complex-mediated effects. Infertility was also observed in Golga3 KO male mice. Although GOLGA3S465Lshowed reduced localization in the Golgi with some expression in the cytoplasm, this abnormal localization did not adversely affect fertility or spermatogenesis in male C57BL/6 mice. Therefore, mutation of the S461 GOLGA3 phosphorylation site did not affect mouse spermatogenesis

    Effect of Hybrid Talc-Basalt Fillers in the Shell Layer on Thermal and Mechanical Performance of Co-Extruded Wood Plastic Composites

    No full text
    Hybrid basalt fiber (BF) and Talc filled high density polyethylene (HDPE) and co-extruded wood-plastic composites (WPCs) with different BF/Talc/HDPE composition levels in the shell were prepared and their mechanical, morphological and thermal properties were characterized. Incorporating BFs into the HDPE-Talc composite substantially enhanced the thermal expansion property, flexural, tensile and dynamic modulus without causing a significant decrease in the tensile and impact strength of the composites. Strain energy estimation suggested positive and better interfacial interactions of HDPE with BFs than that with talc. The co-extruded structure design improved the mechanical properties of WPC due to the protective shell layer. The composite flexural and impact strength properties increased, and the thermal expansion decreased as BF content increased in the hybrid BF/Talc filled shells. The cone calorimetry data demonstrated that flame resistance of co-extruded WPCs was improved with the use of combined fillers in the shell layer, especially with increased loading of BFs. The combined shell filler system with BFs and Talc could offer a balance between cost and performance for co-extruded WPCs

    Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels

    No full text
    Intrinsic self-healing and highly stretchable electro-conductive hydrogels demonstrate wide-ranging utilization in intelligent electronic skin. Herein, we propose a new class of strain sensors prepared by cellulose nanofibers (CNFs) and graphene (GN) co-incorporated poly (vinyl alcohol)-borax (GN-CNF@PVA) hydrogel. The borax can reversibly and dynamically associate with poly (vinyl alcohol) (PVA) and GN-CNF nanocomplexes as a cross-linking agent, providing a tough and flexible network with the hydrogels. CNFs act as a bio-template and dispersant to support GN to create homogeneous GN-CNF aqueous dispersion, endowing the GN-CNF@PVA gels with promoted mechanical flexibility, strength and good conductivity. The resulting composite gels have high stretchability (break-up elongation up to 1000%), excellent viscoelasticity (storage modulus up to 3.7 kPa), rapid self-healing ability (20 s) and high healing efficiency (97.7 ± 1.2%). Due to effective electric pathways provided by GN-CNF nanocomplexes, the strain sensors integrated by GN-CNF@PVA hydrogel with good responsiveness, stability and repeatability can efficiently identify and monitor the various human motions with the gauge factor (GF) of about 3.8, showing promising applications in the field of wearable sensing devices

    Light stabilizers added to the shell of co-extruded wood/high-density polyethylene composites to improve mechanical and anti-UV ageing properties

    No full text
    Weathering of wood--plastic composites (WPCs) leads to discoloration and cracks, which greatly limits their outdoor application. In this study, light stabilizers (including UV-327, HS-944 and nano-SiO) were added to the shell of a co-extruded high-density polyethylene-based WPC to improve its anti-ultraviolet (UV) ageing properties and simultaneously to maintain its good mechanical properties. The results showed that UV-327 was the most effective light stabilizer for improving the mechanical and anti-UV ageing properties of the composites among the three stabilizers used. WPC samples combined with 2% UV-327 had the highest retention rates in flexural strength and also had the smoothest surface after 2500 h of UV ageing. The samples with 2% UV-327 added had the best protection for discoloration, showing the lowest values of Δ* (colour difference) and Δ* (luminescence) in all samples after 2500 h of UV ageing. WPC samples with 2% UV-327 were also oxidized the least after 2500 h of UV ageing. The results reported herein serve to enhance our understanding of the efficiency of light stabilizers in preventing UV degradation of WPCs, with a view to developing co-extruded WPCs with low cost, high anti-UV ageing properties and good mechanical properties for outdoor applications

    Preparation and Properties of Cyanobacteria-Based Carbon Quantum Dots/Polyvinyl Alcohol/ Nanocellulose Composite

    No full text
    Blue luminescent carbon quantum dots (CQDs) were prepared from cyanobacteria by a hydrothermal method. The PL quantum yields of the obtained CQDs was 5.30%. Cyanobacteria-based carbon quantum dots/polyvinyl alcohol/nanocellulose composite films were prepared, which could emit bright blue under UV light. FTIR characterization showed that the composite films had hydroxyl groups on the surface and no new groups were formed after combining the three materials. The photoluminescence (PL) spectra revealed that the emission of the prepared CQDs was excitation dependent. Studies on the water resistance performance and light barrier properties of the composite films showed that they possessed higher water resistance properties and better UV/infrared light barrier properties. Therefore, we report the cyanobacteria-based carbon quantum dots/polyvinyl alcohol/nanocellulose composite films have the potential to be applied in flexible packaging materials, anti-fake materials, UV/infrared light barrier materials and so on

    Self-Recovery, Fatigue-Resistant, and Multifunctional Sensor Assembled by a Nanocellulose/Carbon Nanotube Nanocomplex-Mediated Hydrogel

    No full text
    Flexible sensors have attracted great research interest due to their applications in artificial intelligence, wearable electronics, and personal health management. However, due to the inherent brittleness of common hydrogels, preparing a hydrogel-based sensor integrated with excellent flexibility, self-recovery, and antifatigue properties still remains a challenge to date. In this study, a type of physically and chemically dual-cross-linked conductive hydrogels based on 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber (TOCN)-carrying carbon nanotubes (CNTs) and polyacrylamide (PAAM) matrix via a facial one-pot free-radical polymerization is developed for multifunctional wearable sensing application. Inside the hierarchical gel network, TOCNs not only serve as the nanoreinforcement with a toughening effect but also efficiently assist the homogeneous distribution of CNTs in the hydrogel matrix. The optimized TOCN-CNT/PAAM hydrogel integrates high compressive (∼2.55 MPa at 60% strain) and tensile (∼0.15 MPa) strength, excellent intrinsic self-recovery property (recovery efficiency \u3e92%), and antifatigue capacity under both cyclic stretching and pressing. The multifunctional sensors assembled by the hydrogel exhibit both high strain sensitivity (gauge factor ≈11.8 at 100-200% strain) and good pressure sensing ability over a large pressure range (0-140 kPa), which can effectively detect the subtle and large-scale human motions through repeatable and stable electrical signals even after 100 loading-unloading cycles. The comprehensive performance of the TOCN-CNT/PAAM hydrogel-based sensor is superior to those of most gel-based sensors previously reported, indicating its potential applications in multifunctional sensing devices for healthcare systems and human motion monitoring
    corecore