200 research outputs found

    Seeing the unseen dynamics in soft matter

    Get PDF
    The theme of this thesis concerns the fundamental questions in soft matter, in particular, the dynamics of vesicle membranes, interfacial polymers, colloidal particles. Optical imaging was applied three distinct systems to reveal the underlying physical processes that were hindered by other prior indirect measurements. First, mechanical responses of both polymer and lipid vesicles were investigated by watching their shape transformations under environmental variations, mostly under osmotic shocks, which emitted new prospects on membrane elasticity, instability and kinetics. Furthermore, with statistical analysis of particle and pattern tracking, three classical questions in polymer physics regarding polymer-surface interactions were revisited: adsorption, surface diffusion, and dewetting. The final remark of this thesis presented inter-surface interaction induced by binary liquid mixture near the demixing temperature. Both colloidal assembly and physical chemistry of binary liquid were examined through Janus particle. All these studies followed the same spirit of using direct imaging to declare the unseen dynamical processes in soft matter

    S-diclofenac Protects against Doxorubicin-Induced Cardiomyopathy in Mice via Ameliorating Cardiac Gap Junction Remodeling

    Get PDF
    Hydrogen sulfide (H2S), as a novel gaseous mediator, plays important roles in mammalian cardiovascular tissues. In the present study, we investigated the cardioprotective effect of S-diclofenac (2-[(2,6-dichlorophenyl)amino] benzeneacetic acid 4-(3H-1,2,dithiol-3-thione-5-yl)phenyl ester), a novel H2S-releasing derivative of diclofenac, in a murine model of doxorubicin-induced cardiomyopathy. After a single dose injection of doxorubicin (15 mg/kg, i.p.), male C57BL/6J mice were given daily treatment of S-diclofenac (25 and 50 µmol/kg, i.p.), diclofenac (25 and 50 µmol/kg, i.p.), NaHS (50 µmol/kg, i.p.), or same volume of vehicle. The cardioprotective effect of S-diclofenac was observed after 14 days. It showed that S-diclofenac, but not diclofenac, dose-dependently inhibited the doxorubicin-induced downregulation of cardiac gap junction proteins (connexin 43 and connexin 45) and thus reversed the remodeling of gap junctions in hearts. It also dose-dependently suppressed doxorubicin-induced activation of JNK in hearts. Furthermore, S-diclofenac produced a dose-dependent anti-inflammatory and anti-oxidative effect in this model. As a result, S-diclofenac significantly attenuated doxorubicin-related cardiac injury and cardiac dysfunction, and improved the survival rate of mice with doxorubicin-induced cardiomyopathy. These effects of S-diclofenac were mimicked in large part by NaHS. Therefore, we propose that H2S released from S-diclofenac in vivo contributes to the protective effect in doxorubicin-induced cardiomyopathy. These data also provide evidence for a critical role of H2S in the pathogenesis of doxorubicin-induced cardiomyopathy
    corecore