53 research outputs found

    Prognostic Significance of miR-181b and miR-21 in Gastric Cancer Patients Treated with S-1/Oxaliplatin or Doxifluridine/Oxaliplatin

    Get PDF
    Background: The goal of this study is to evaluate the effectiveness of S-1/Oxaliplatin vs. Doxifluridine/Oxaliplatin regimen and to identify miRNAs as potential prognostic biomarkers in gastric cancer patients. The expression of candidate miRNAs was quantified from fifty-five late stage gastric cancer FFPE specimens. Experimental Design: Gastric cancer patients with KPS>70 were recruited for the trial. The control group was treated with 400 mg/twice/day Doxifluridine plus i.v. with Oxaliplatin at 130 mg/m 2/first day/4 week cycle. The testing group was treated with S-1 at 40 mg/twice/day/4 week cycle plus i.v. with Oxaliplatin at 130 mg/m 2/first day/4 week cycle. Total RNAs were extracted from normal and gastric tumor specimens. The levels of miRNAs were quantified using real time qRT-PCR expression analysis. Results: The overall objective response rate (CR+PR) of patients treated with S-1/Oxaliplatin was 33.3% (CR+PR) vs. 17.6% (CR+PR) with Doxifluridine/Oxaliplatin for advanced stage gastric cancer patients. The average overall survival for patients treated with S-1/Oxaliplatin was 7.80 month vs. 7.30 month with patients treated with Doxifluridine/Oxaliplatin. The expression of miR-181b (P = 0.022) and miR-21 (P = 0.0029) was significantly overexpressed in gastric tumors compared to normal gastric tissues. Kaplan-Meier survival analysis revealed that low levels of miR-21 expression (Log rank test, hazard ratio: 0.17, CI = 0.06-0.45; P = 0.0004) and miR-181b (Log rank test, hazard ratio: 0.37, CI = 0.16-0.87; P = 0.018) are closely associated with better patient's overall survival for both S-1 and Doxifluridine based regimens. Conclusion: Patients treated with S-1/Oxaliplatin had a better response than those treated with Doxifluridine/Oxaliplatin. miR-21 and miR-181b hold great potential as prognostic biomarkers in late stage gastric cancer. © 2011 Jiang et al

    3,3′Diindolylmethane Suppresses Vascular Smooth Muscle Cell Phenotypic Modulation and Inhibits Neointima Formation after Carotid Injury

    Get PDF
    3,3'Diindolylmethane (DIM), a natural phytochemical, has shown inhibitory effects on the growth and migration of a variety of cancer cells; however, whether DIM has similar effects on vascular smooth muscle cells (VSMCs) remains unknown. The purpose of this study was to assess the effects of DIM on the proliferation and migration of cultured VSMCs and neointima formation in a carotid injury model, as well as the related cell signaling mechanisms.DIM dose-dependently inhibited the platelet-derived growth factor (PDGF)-BB-induced proliferation of VSMCs without cell cytotoxicity. This inhibition was caused by a G0/G1 phase cell cycle arrest demonstrated by fluorescence-activated cell-sorting analysis. We also showed that DIM-induced growth inhibition was associated with the inhibition of the expression of cyclin D1 and cyclin-dependent kinase (CDK) 4/6 as well as an increase in p27(Kip1) levels in PDGF-stimulated VSMCs. Moreover, DIM was also found to modulate migration of VSMCs and smooth muscle-specific contractile marker expression. Mechanistically, DIM negatively modulated PDGF-BB-induced phosphorylation of PDGF-recptorβ (PDGF-Rβ) and the activities of downstream signaling molecules including Akt/glycogen synthase kinase(GSK)3β, extracellular signal-regulated kinase1/2 (ERK1/2), and signal transducers and activators of transcription 3 (STAT3). Our in vivo studies using a mouse carotid arterial injury model revealed that treatment with 150 mg/kg DIM resulted in significant reduction of the neointima/media ratio and proliferating cell nuclear antigen (PCNA)-positive cells, without affecting apoptosis of vascular cells and reendothelialization. Infiltration of inflammatory cells was also inhibited by DIM administration.These results demonstrate that DIM can suppress the phenotypic modulation of VSMCs and neointima hyperplasia after vascular injury. These beneficial effects on VSMCs were at least partly mediated by the inhibition of PDGF-Rβ and the activities of downstream signaling pathways. The results suggest that DIM has the potential to be a candidate for the prevention of restenosis

    Cactus pear: a natural product in cancer chemoprevention

    Get PDF
    BACKGROUND: Cancer chemoprevention is a new approach in cancer prevention, in which chemical agents are used to prevent cancer in normal and/or high-risk populations. Although chemoprevention has shown promise in some epithelial cancers, currently available preventive agents are limited and the agents are costly, generally with side effects. Natural products, such as grape seed, green tea, and certain herbs have demonstrated anti-cancer effects. To find a natural product that can be used in chemoprevention of cancer, we tested Arizona cactus fruit solution, the aqueous extracts of cactus pear, for its anti-cancer effects in cultured cells and in an animal model. METHOD: Aqueous extracts of cactus pear were used to treat immortalized ovarian and cervical epithelial cells, as well as ovarian, cervical, and bladder cancer cells. Aqueous extracts of cactus pear were used at six concentrations (0, 0.5, 1, 5, 10 or 25%) to treat cells for 1, 3, or 5 days. Growth inhibition, apoptosis induction, and cell cycle changes were analyzed in the cultured cells; the suppression of tumor growth in nude mice was evaluated and compared with the effect of a synthetic retinoid N-(4-hydroxyphernyl) retinamide (4-HPR), which is currently used as a chemoprevention agent. Immunohistochemistry staining of tissue samples from animal tumors was performed to examine the gene expression. RESULTS: Cells exposed to cactus pear extracts had a significant increase in apoptosis and growth inhibition in both immortalized epithelial cells and cancer cells in a dose- and time-dependent manner. It also affected cell cycle of cancer cells by increasing G1 and decreasing G2 and S phases. Both 4-HPR and cactus pear extracts significantly suppressed tumor growth in nude mice, increased annexin IV expression, and decreased VEGF expression. CONCLUSION: Arizona cactus pear extracts effectively inhibited cell growth in several different immortalized and cancer cell cultures, suppressed tumor growth in nude mice, and modulated expression of tumor-related genes. These effects were comparable with those caused by a synthetic retinoid currently used in chemoprevention trials. The mechanism of the anti-cancer effects of cactus pear extracts needs to be further studied

    An empirical approach for predicting burden velocities in rock blasting

    No full text
    Abstract An analytical relation between burden velocity and ratio of burden to blasthole diameter is developed in this paper. This relation is found to be consistent with the measured burden velocities of all 37 full-scale blasts found from published articles. These blasts include single-hole blasts, multi-hole blasts, and simultaneously-initiated blasts with various borehole diameters such as 64 mm, 76 mm, 92 mm, 115 mm, 142 mm and 310 mm. All boreholes were fully charged. The agreement between measured and calculated burden velocities demonstrates that this relation can be used to predict the burden velocity of a wide range of full-scale blast with fully-coupled explosive charge and help to determine a correct delay time between adjacent holes or rows in various full-scale blasts involved in tunnelling (or drifting), surface and underground mining production blasts and underground opening slot blasts. In addition, this theoretical relation is found to agree with the measured burden velocities of 9 laboratory small-scale blasts to a certain extent. To predict the burden velocity of a small-scale blast, a further study or modification to the relation is necessary by using more small-scale blasts in the future

    Effect of uniform blowing or suction on hypersonic spatially developing turbulent boundary layers

    No full text
    Over the past decades, the reduction of drag has attracted considerable attention for its potential applications in engineering 1-3. Direct numerical simulations (DNSs) provide accurate data that can be used to study the underlying physics of drag reduction. In a recent DNS 4 of an incompressible spatially developing turbulent boundary layer with uniform blowing or suction applied on the wall, the drag reduction mechanism was quantitatively explained by the Fukagata, Iwamoto and Kasagi (FIK) identity 5. Compared with incompressible flows, far fewer studies have been reported for high-speed (hypersonic) flows. Therefore, the purpose of this study is to investigate the effects of uniform blowing and uniform suction on the skin-friction in hypersonic turbulent boundary layers

    Discovery of Generalized Patterns

    No full text
    . The pattern extraction is one of the main problem in data mining. Usually, patterns are defined by a conjunction of simple descriptors of the form (variable = value). In this paper we consider a more general form of descriptors, namely (variable 2 valueset), where valueset is a subset of the variable domain. We present methods for generalized pattern extraction. We also investigate the problem of data table covering by a semi-optimal set of patterns. The proposed methods return more universal features satisfied by a large number of objects in data table (or in a given subset of objects). We also present applications of extracted patterns for two important tasks of KDD: prediction of new unseen cases and description of decision classes. 1 Introduction Patterns are often seen as statements in a logic language describing a subsets of data. In many applications, patterns are understood as the "if ... then ..." rules [2], [3], [10]. In this paper we consider patterns called te..
    • …
    corecore