41 research outputs found

    Mesh-MLP: An all-MLP Architecture for Mesh Classification and Semantic Segmentation

    Full text link
    With the rapid development of geometric deep learning techniques, many mesh-based convolutional operators have been proposed to bridge irregular mesh structures and popular backbone networks. In this paper, we show that while convolutions are helpful, a simple architecture based exclusively on multi-layer perceptrons (MLPs) is competent enough to deal with mesh classification and semantic segmentation. Our new network architecture, named Mesh-MLP, takes mesh vertices equipped with the heat kernel signature (HKS) and dihedral angles as the input, replaces the convolution module of a ResNet with Multi-layer Perceptron (MLP), and utilizes layer normalization (LN) to perform the normalization of the layers. The all-MLP architecture operates in an end-to-end fashion and does not include a pooling module. Extensive experimental results on the mesh classification/segmentation tasks validate the effectiveness of the all-MLP architecture.Comment: 8 pages, 6 figure

    Neural-IMLS: Self-supervised Implicit Moving Least-Squares Network for Surface Reconstruction

    Full text link
    Surface reconstruction is very challenging when the input point clouds, particularly real scans, are noisy and lack normals. Observing that the Multilayer Perceptron (MLP) and the implicit moving least-square function (IMLS) provide a dual representation of the underlying surface, we introduce Neural-IMLS, a novel approach that directly learns the noise-resistant signed distance function (SDF) from unoriented raw point clouds in a self-supervised fashion. We use the IMLS to regularize the distance values reported by the MLP while using the MLP to regularize the normals of the data points for running the IMLS. We also prove that at the convergence, our neural network, benefiting from the mutual learning mechanism between the MLP and the IMLS, produces a faithful SDF whose zero-level set approximates the underlying surface. We conducted extensive experiments on various benchmarks, including synthetic scans and real scans. The experimental results show that {\em Neural-IMLS} can reconstruct faithful shapes on various benchmarks with noise and missing parts. The source code can be found at~\url{https://github.com/bearprin/Neural-IMLS}

    Text-Only Domain Adaptation for End-to-End Speech Recognition through Down-Sampling Acoustic Representation

    Full text link
    Mapping two modalities, speech and text, into a shared representation space, is a research topic of using text-only data to improve end-to-end automatic speech recognition (ASR) performance in new domains. However, the length of speech representation and text representation is inconsistent. Although the previous method up-samples the text representation to align with acoustic modality, it may not match the expected actual duration. In this paper, we proposed novel representations match strategy through down-sampling acoustic representation to align with text modality. By introducing a continuous integrate-and-fire (CIF) module generating acoustic representations consistent with token length, our ASR model can learn unified representations from both modalities better, allowing for domain adaptation using text-only data of the target domain. Experiment results of new domain data demonstrate the effectiveness of the proposed method.Comment: Accepted by INTERSPEECH 2023. arXiv admin note: text overlap with arXiv:2309.0143

    Biological Bone Micro Grinding Temperature Field under Nanoparticle Jet Mist Cooling

    Get PDF
    Clinical neurosurgeons used micro grinding to remove bone tissues, and drip irrigation-type normal saline (NS) is used with low cooling efficiency. Osteonecrosis and irreversible thermal neural injury caused by excessively high grinding temperature are bottleneck problems in neurosurgery and have severely restricted the application of micro grinding in surgical procedures. Therefore, a nanoparticle jet mist cooling (NJMC) bio-bone micro grinding process is put forward in this chapter. The nanofluid convective heat transfer mechanism in the micro grinding zone is investigated, and heat transfer enhancement mechanism of solid nanoparticles and heat distribution mechanism in the micro grinding zone are revealed. On this basis, a temperature field model of NJMC bio-bone micro grinding is established. An experimental platform of NJMC bio-bone micro grinding is constructed, and bone micro grinding force and temperatures at different measuring points on the bone surface are measured. The results indicated that the model error of temperature field is 6.7%, theoretical analysis basically accorded with experimental results, thus certifying the correctness of the dynamic temperature field in NJMC bio-bone micro grinding

    A Study on Impact Force Detection Method Based on Piezoelectric Sensing

    No full text
    Impact force refers to a transient phenomenon with a very short-acting time, but a large impulse. Therefore, the detection of impact vibration is critical for the reliability, stability, and overall life of mechanical parts. Accordingly, this paper proposes a method to indirectly characterize the impact force by using an impact stress wave. The LS-DYNA software is utilized to establish the model of a ball impacting the steel plate, and the impact force of the ball and the impact response of the detection point are obtained through explicit dynamic finite element analysis. In addition, on this basis, a correspondence between the impact force and the impact response is established, and finally, an experimental platform for impact force detection is built for experimental testing. The results obtained by the finite element method are in good agreement with the experimental measurement results, and it can be inferred that the detected piezoelectric signal can be used to characterize the impact force. The method proposed herein can guide the impact resistance design and safety assessment of structures in actual engineering applications
    corecore