32 research outputs found

    Comparative analysis of phosphoproteomic in the intestine of Sepia lycidas under different salinity environments

    Get PDF
    Cuttlefish are sensitive to the breeding environment, and the low-salinity environment significantly impacts their growth and immunity. So far, it is difficult to breed this species artificially. This study was conducted in Sepia lycidas. And the aim was to investigate the differences in protein phosphorylation in the intestine of S. lycidas under different salinity conditions. Firstly, 999 phosphoproteins (specific peptide ≥ 1), 1928 phosphopeptides, and 2727 phosphorylation sites were identified. Among them were 284 down-regulated expression phosphorylation sites (corresponding to 115 phosphoproteins) and 674 up-regulated expression phosphorylation sites (corresponding to 408 phosphoproteins) in the intestine under a low salinity environment compared with that under a natural salinity environment. Next, GO analysis found that more phosphoproteins corresponding to differentially expressed phosphorylation sites were related to anatomical structure development, multicellular organism development, regulation of the cellular process, etc. The molecular functions of these proteins mainly contain protein binding, transferase activity, catalytic activity, and heterocyclic compound binding. And they are mainly involved in the cellular components of intracellular anatomical structure, organelle, and cytoplasm. KEGG enrichment analysis of the differential phosphoproteins suggested that many significantly enriched pathways were related to the phosphatidylinositol signaling system, cell junction (adherens junction and tight junction), and inositol phosphate metabolism. Finally, changes in environmental salinity can affect the intestinal structure, metabolism, and immune homeostasis of S. lycidas

    Complex Networks Approach for Analyzing the Correlation of Traditional Chinese Medicine Syndrome Evolvement and Cardiovascular Events in Patients with Stable Coronary Heart Disease

    Get PDF
    This is a multicenter prospective cohort study to analyze the correlation of traditional Chinese medicine (TCM) syndrome evolvement and cardiovascular events in patients with stable coronary heart disease (CHD). The impact of syndrome evolvement on cardiovascular events during the 6-month and 12-month follow-up was analyzed using complex networks approach. Results of verification using Chi-square test showed that the occurrence of cardiovascular events was positively correlated with syndrome evolvement when it evolved from toxic syndrome to Qi deficiency, blood stasis, or sustained toxic syndrome, when it evolved from Qi deficiency to blood stasis, toxic syndrome, or sustained Qi deficiency, and when it evolved from blood stasis to Qi deficiency. Blood stasis, Qi deficiency, and toxic syndrome are important syndrome factors for stable CHD. There are positive correlations between cardiovascular events and syndrome evolution from toxic syndrome to Qi deficiency or blood stasis, from Qi deficiency to blood stasis, or toxic syndrome and from blood stasis to Qi deficiency. These results indicate that stable CHD patients with pathogenesis of toxin consuming Qi, toxin leading to blood stasis, and mutual transformation of Qi deficiency and blood stasis are prone to recurrent cardiovascular events

    P15194_tandem mass spectra.zip

    No full text
    And I will provide tandem mass spectra of a single unique peptide to identify protein

    Optimization of trans-4-hydroxyproline synthesis pathway by rearrangement center carbon metabolism in Escherichia coli

    No full text
    Abstract Background trans-4-Hydroxyproline (T-4-HYP) is a promising intermediate in the synthesis of antibiotic drugs. However, its industrial production remains challenging due to the low production efficiency of T-4-HYP. This study focused on designing the key nodes of anabolic pathway to enhance carbon flux and minimize carbon loss, thereby maximizing the production potential of microbial cell factories. Results First, a basic strain, HYP-1, was developed by releasing feedback inhibitors and expressing heterologous genes for the production of trans-4-hydroxyproline. Subsequently, the biosynthetic pathway was strengthened while branching pathways were disrupted, resulting in increased metabolic flow of α-ketoglutarate in the Tricarboxylic acid cycle. The introduction of the NOG (non-oxidative glycolysis) pathway rearranged the central carbon metabolism, redirecting glucose towards acetyl-CoA. Furthermore, the supply of NADPH was enhanced to improve the acid production capacity of the strain. Finally, the fermentation process of T-4-HYP was optimized using a continuous feeding method. The rate of sugar supplementation controlled the dissolved oxygen concentrations during fermentation, and Fe2+ was continuously fed to supplement the reduced iron for hydroxylation. These modifications ensured an effective supply of proline hydroxylase cofactors (O2 and Fe2+), enabling efficient production of T-4-HYP in the microbial cell factory system. The strain HYP-10 produced 89.4 g/L of T-4-HYP in a 5 L fermenter, with a total yield of 0.34 g/g, the highest values reported by microbial fermentation, the yield increased by 63.1% compared with the highest existing reported yield. Conclusion This study presents a strategy for establishing a microbial cell factory capable of producing T-4-HYP at high levels, making it suitable for large-scale industrial production. Additionally, this study provides valuable insights into regulating synthesis of other compounds with α-ketoglutaric acid as precursor

    Efficient Large-Scale and Scarless Genome Engineering Enables the Construction and Screening of <i>Bacillus subtilis</i> Biofuel Overproducers

    No full text
    Bacillus subtilis is a versatile microbial cell factory that can produce valuable proteins and value-added chemicals. Long fragment editing techniques are of great importance for accelerating bacterial genome engineering to obtain desirable and genetically stable host strains. Herein, we develop an efficient CRISPR-Cas9 method for large-scale and scarless genome engineering in the Bacillus subtilis genome, which can delete up to 134.3 kb DNA fragments, 3.5 times as long as the previous report, with a positivity rate of 100%. The effects of using a heterologous NHEJ system, linear donor DNA, and various donor DNA length on the engineering efficiencies were also investigated. The CRISPR-Cas9 method was then utilized for Bacillus subtilis genome simplification and construction of a series of individual and cumulative deletion mutants, which are further screened for overproducer of isobutanol, a new generation biofuel. These results suggest that the method is a powerful genome engineering tool for constructing and screening engineered host strains with enhanced capabilities, highlighting the potential for synthetic biology and metabolic engineering

    Modulation of Hair Growth with Small Molecule Agonists of the Hedgehog Signaling Pathway

    Get PDF
    The hedgehog (Hh) family of intercellular signaling proteins is intricately linked to the development and patterning of almost every major vertebrate organ system. In the skin, sonic hedgehog (Shh) is required for hair follicle morphogenesis during embryogenesis and for regulating follicular growth and cycling in the adult. We recently described the identification and characterization of synthetic, non-peptidyl small molecule agonists of the Hh pathway. In this study, we examined the ability of a topically applied Hh-agonist to modulate follicular cycling in adult mouse skin. We report that the Hh-agonist can stimulate the transition from the resting (telogen) to the growth (anagen) stage of the hair cycle in adult mouse skin. Hh-agonist-induced hair growth caused no detectable differences in epidermal proliferation, differentiation, or in the endogenous Hh-signaling pathway as measured by Gli1, Shh, Ptc1, and Gli2 gene expression when compared with a normal hair cycle. In addition, we demonstrate that Hh-agonist is active in human scalp in vitro as measured by Gli1 gene expression. These results suggest that the topical application of Hh-agonist could be effective in treating conditions of decreased proliferation and aberrant follicular cycling in the scalp including androgenetic alopecia (pattern hair loss)

    Xueshuantong Injection in Treating Deep Venous Thrombosis: A Systematic Review and Trial Sequential Analysis

    No full text
    Aims. In recent years, the incidence of deep venous thrombosis (DVT) presents an increasing trend year by year. The current evidence regarding the efficacy and safety of Xueshuantong injection for DVT is controversial. This systematic review (SR) aimed to assess the efficacy and safety of Xueshuantong injection in the treatment of DVT systematically and provide an evidence-based reference for clinical treatment. Methods. Nine electronic databases were used to identify the literature consisting of randomized controlled trials (RCTs) with a date of search of 1 November 2020. Clinical effective rate and incidence rate of adverse events were investigated as primary outcomes. Patency rate of femoral vein, patency rate of popliteal vein, patency rate of posterior tibial vein, circumference difference, activated partial thromboplastin time (APTT), and D-dimer (D-D) were investigated as secondary outcomes. Revman 5.4.1 was used to analyze the results. Analysis of the power of evidence was performed with Trial Sequential Analysis (TSA). Results. A total of 12 articles including 1018 patients were included. The results of the meta-analysis showed that the clinical effective rate in the experimental group was higher than that in the control group, the incidence rate of adverse events in the experimental group was higher than that in the control group; after the operation, the patency rate of femoral vein, patency rate of popliteal vein, patency rate of posterior tibial vein, circumference difference, APTT, and D-D in the experimental group were significantly improved compared with those in the control group, and the difference between the groups was statistically significant. TSA suggested that the meta-analysis concerning the clinical effectiveness of Xueshuantong injection in the treatment of DVT was of adequate power to reach firm conclusions. Conclusion. Based on the current analysis, Xueshuantong injection as an add-on treatment provided better treatment effect for DVT with adequate power but this benefit should be considered with caution because of the small number of studies included in the meta-analysis and the high or unclear risk of bias of the included trials, suggesting that further studies are needed

    The Influence of Shuttle-Shape Emodin Nanoparticles on the Streptococcus suis Biofilm

    No full text
    Biofilm is one of the most important physiological protective barriers of the Streptococcus suis (S. suis), and it is also one of the primary causes of hindrance to drug infiltration, reduction of bactericidal effects, and the development of antibiotic resistance. In order to intervene or eliminate S. suis biofilm, shuttle-shape emodin-loaded nanoparticles were developed in our study. The emodin nanoparticles were prepared by emodin and gelatin–cyclodextrin which was synthesized as drug carrier, and the nanoparticles were 174 nm in size, -4.64 mv in zeta potential, and exhibited a sustained emodin release. Moreover, the delivery kinetics of nanoparticles were also explored in our study. The confocal laser scanning microscopy and colony forming unit enumeration experiment indicated that nanoparticles could increase drug infiltration and uptake by biofilm. The flow cytometry system analysis showed that nanoparticles could be up taken by 99% of the bacteria cells. TCP assay and scanning electron microscopy showed that the nanoparticles had better effect on biofilm inhibition and elimination when compared with emodin solution. These results revealed that the emodin nanoparticles had a better therapeutic effect on the S. suis biofilm in vitro
    corecore