334 research outputs found

    Metamaterial Transmission Line and its Applications

    Get PDF

    Novel Cyanine-AMP Conjugates for Efficient 5\u27 RNA Fluorescent Labeling by One-Step Transcription and Replacement of [γ-\u3csup\u3e32\u3c/sup\u3eP] ATP in RNA Structural Investigation

    Get PDF
    Two novel fluorescent cyanine-AMP conjugates, F550/570 and F650/670, have been synthesized to serve as transcription initiators under the T7 φ2.5 promoter. Efficient fluorophore labeling of 5′ RNA is achieved in a single transcription step by including F550/570 and F650/670 in the transcription solution. The current work makes fluorescently labeled RNA readily available for broad applications in biochemistry, molecular biology, structural biology and biomedicine. In particular, site-specifically fluorophore-labeled large RNAs prepared by the current method may be used to investigate RNA structure, folding and mechanism by various fluorescence techniques. In addition, F550/570 and F650/670 may replace [γ-32P]ATP to prepare 5′ labeled RNA for RNA structural and functional investigation, thereby eliminating the need for the unstable and radio-hazardous [γ-32P]ATP

    Using phase-change materials to switch the direction of reflectionless light propagation in non-PT-symmetric structures

    Get PDF
    We introduce a non-parity-time-symmetric three-layer structure, consisting of a gain medium layer sandwiched between two phase-change medium layers for switching of the direction of reflectionless light propagation. We show that for this structure unidirectional reflectionlessness in the forward direction can be switched to unidirectional reflectionlessness in the backward direction at the optical communication wavelength by switching the phase-change material Ge2Sb2Te5 (GST) from its amorphous to its crystalline phase. We also show that it is the existence of exceptional points for this structure with GST in both its amorphous and crystalline phases which leads to unidirectional reflectionless propagation in the forward direction for GST in its amorphous phase, and in the backward direction for GST in its crystalline phase. Our results could be potentially important for developing a new generation of compact active free-space optical devices. We also show that phase-change materials can be used to switch photonic nanostructures between cloaking and superscattering regimes at mid-infrared wavelengths. More specifically, we investigate the scattering properties of subwavelength three-layer cylindrical structures in which the material in the outer shell is the phase-change material GST. We first show that, when GST is switched between its amorphous and crystalline phases, properly designed electrically small structures can switch between resonant scattering and cloaking invisibility regimes. The contrast ratio between the scattering cross sections of the cloaking invisibility and resonant scattering regimes reaches almost unity. We then also show that larger, moderately small cylindrical structures can be designed to switch between superscattering and cloaking invisibility regimes, when GST is switched between its crystalline and amorphous phases. The contrast ratio between the scattering cross sections of cloaking invisibility and superscattering regimes can be as high as ~ 93%. Our results could be potentially important for developing a new generation of compact reconfigurable optical devices

    Schema theory based data engineering in gene expression programming for big data analytics

    Get PDF
    Gene expression programming (GEP) is a data driven evolutionary technique that well suits for correlation mining. Parallel GEPs are proposed to speed up the evolution process using a cluster of computers or a computer with multiple CPU cores. However, the generation structure of chromosomes and the size of input data are two issues that tend to be neglected when speeding up GEP in evolution. To fill the research gap, this paper proposes three guiding principles to elaborate the computation nature of GEP in evolution based on an analysis of GEP schema theory. As a result, a novel data engineered GEP is developed which follows closely the generation structure of chromosomes in parallelization and considers the input data size in segmentation. Experimental results on two data sets with complementary features show that the data engineered GEP speeds up the evolution process significantly without loss of accuracy in data correlation mining. Based on the experimental tests, a computation model of the data engineered GEP is further developed to demonstrate its high scalability in dealing with potential big data using a large number of CPU cores

    Research and Modeling of the Bidirectional Half-Bridge Current-Doubler DC/DC Converter

    Get PDF
    Due to its high step-up voltage ratio, high utilization rate, and good stability, the bidirectional half-bridge current-doubler topology is widely used in lithium battery system. This paper will further analyze the bidirectional half-bridge current-doubler topology. Taking into account the fact that the current is not equal to the two times current inductance may lead to a greater transformer magnetizing current leaving the transformer core saturation occurring. This paper will focus on the circuit modeling of steady-state analysis and small signal analysis, analyzing the influence parameters for the inductor current by steady-state model and analyzing the stability of the system by the small signal model. The PID controllers and soft start algorithm are designed. Then the influence of circuit parameters on the steady state and the effect of soft start algorithm is verified, and finally the function of the soft start algorithm is achieved by the experimental prototype

    The Expressive Power of Graph Neural Networks: A Survey

    Full text link
    Graph neural networks (GNNs) are effective machine learning models for many graph-related applications. Despite their empirical success, many research efforts focus on the theoretical limitations of GNNs, i.e., the GNNs expressive power. Early works in this domain mainly focus on studying the graph isomorphism recognition ability of GNNs, and recent works try to leverage the properties such as subgraph counting and connectivity learning to characterize the expressive power of GNNs, which are more practical and closer to real-world. However, no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a first survey for models for enhancing expressive power under different forms of definition. Concretely, the models are reviewed based on three categories, i.e., Graph feature enhancement, Graph topology enhancement, and GNNs architecture enhancement

    Single Protein Encapsulated Doxorubicin as an Efficacious Anticancer Therapeutic

    Get PDF
    Small‐molecule chemotherapeutics are potent and effective against a variety of malignancies, but common and severe side effects restrict their clinical applications. Nanomedicine approaches represent a major focus for improving chemotherapy, but have met limited success. To overcome the limitations of chemotherapy drugs, a novel single protein encapsulation (SPE)‐based drug formulation and delivery platform is developed and its utility in improving doxorubicin (DOX) treatment is tested. Using this methodology, a series of SPEDOX complexes are generated by encapsulating various numbers of DOX molecules into a single human serum albumin (HSA) molecule. UV/fluorescence spectroscopy, membrane dialysis, and dynamic light scattering techniques show that SPEDOXs are stable and uniform as monomeric HSA and display unique properties distinct from those of DOX and DOX‐HSA mixture. Furthermore, detailed procedures to precisely monitor and control both DOX payload and binding strength to HSA are established. Breast cancer xenograft tumor studies reveal that SPEDOX‐6 treatment displays improved pharmacokinetic profiles, higher antitumor efficacy, and lower DOX accumulation in the heart tissue compared with unformulated DOX. This SPE technology, which does not involve nanoparticle assembly and modifications to either small‐molecule drugs or HSA, may open up a new avenue for developing new drug delivery systems to improve anticancer therapeutics

    Control-Oriented Modeling of All-Solid-State Batteries Using Physics-Based Equivalent Circuits

    Get PDF
    Considered as one of the ultimate energy storage technologies for electrified transportation, the emerging all-solid-state batteries (ASSBs) have attracted immense attention due to their superior thermal stability, increased power and energy densities, and prolonged cycle life. To achieve the expected high performance, practical applications of ASSBs require accurate and computationally efficient models for the design and implementation of many onboard management algorithms, so that the ASSB safety, health, and cycling performance can be optimized under a wide range of operating conditions. A control-oriented modeling framework is thus established in this work by systematically simplifying a rigorous partial differential equation (PDE) based model of the ASSBs developed from underlying electrochemical principles. Specifically, partial fraction expansion and moment matching are used to obtain ordinary differential equation based reduced-order models (ROMs). By expressing the models in a canonical circuit form, excellent properties for control design such as structural simplicity and full observability are revealed. Compared to the original PDE model, the developed ROMs have demonstrated high fidelity at significantly improved computational efficiency. Extensive comparisons have also been conducted to verify its superiority to the prevailing models due to the consideration of concentration-dependent diffusion and migration. Such ROMs can thus be used for advanced control design in future intelligent management systems of ASSBs

    Switching photonic nanostructures between cloaking and superscattering regimes using phase-change materials

    Get PDF
    We show that phase-change materials can be used to switch photonic nanostructures between cloaking and superscattering regimes at mid-infrared wavelengths. More specifically, we investigate the scattering properties of subwavelength three-layer cylindrical structures in which the material in the outer shell is the phase-change material Ge_2Sb_2Te_5 (GST). We first show that, when GST is switched between its amorphous and crystalline phases, properly designed electrically small structures can switch between resonant scattering and cloaking invisibility regimes. The contrast ratio between the scattering cross sections of the cloaking invisibility and resonant scattering regimes reaches almost unity. We then also show that larger, moderately small cylindrical structures can be designed to switch between superscattering and cloaking invisibility regimes, when GST is switched between its crystalline and amorphous phases. The contrast ratio between the scattering cross sections of cloaking invisibility and superscattering regimes can be as high as ∼ 93%. Our results could be potentially important for developing a new generation of compact reconfigurable optical devices

    Using phase-change materials to switch the direction of reflectionless light propagation in non-PT-symmetric structures

    Get PDF
    We introduce a non-parity-time-symmetric three-layer structure, consisting of a gain medium layer sandwiched between two phase-change medium layers for switching of the direction of reflectionless light propagation. We show that for this structure unidirectional reflectionlessness in the forward direction can be switched to unidirectional reflectionlessness in the backward direction at the optical communication wavelength by switching the phase-change material Ge2Sb2Te5 (GST) from its amorphous to its crystalline phase. We also show that it is the existence of exceptional points for this structure with GST in both its amorphous and crystalline phases which leads to unidirectional reflectionless propagation in the forward direction for GST in its amorphous phase, and in the backward direction for GST in its crystalline phase. Our results could be potentially important for developing a new generation of compact active free-space optical devices. We also show that phase-change materials can be used to switch photonic nanostructures between cloaking and superscattering regimes at mid-infrared wavelengths. More specifically, we investigate the scattering properties of subwavelength three-layer cylindrical structures in which the material in the outer shell is the phase-change material GST. We first show that, when GST is switched between its amorphous and crystalline phases, properly designed electrically small structures can switch between resonant scattering and cloaking invisibility regimes. The contrast ratio between the scattering cross sections of the cloaking invisibility and resonant scattering regimes reaches almost unity. We then also show that larger, moderately small cylindrical structures can be designed to switch between superscattering and cloaking invisibility regimes, when GST is switched between its crystalline and amorphous phases. The contrast ratio between the scattering cross sections of cloaking invisibility and superscattering regimes can be as high as ~ 93%. Our results could be potentially important for developing a new generation of compact reconfigurable optical devices
    corecore