1,431 research outputs found

    Significance of EpCAM and TROP2 expression in non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tumor-associated calcium signal transducer (<it>TACSTD</it>) genes, originally designated epithelial cell adhesion molecule (EpCAM) and TROP2, represent true oncogenes. Little is known about EpCAM and TROP2 gene expression in non-small cell lung carcinoma (NSCLC). This study evaluated EpCAM and TROP2 protein expression and clinicopathologic significance in cases of NSCLC.</p> <p>Methods</p> <p>Tissue microarray blocks acquired from 164 cases of NSCLC, including 100 cases of adenocarcinoma (AdC) and 64 of squamous cell carcinoma (SCC), were examined by immunohistochemical staining for EpCAM, and TROP2. The results were correlated with clinicopathologic data.</p> <p>Results</p> <p>EpCAM and TROP2 were significantly overexpressed in SCC than in AdC (<it>P </it>< 0.01). In AdC, EpCAM overexpression was closely related to sex, histologic grade, pathologic T stage, pathologic N stage, and TNM stage, and TROP2 overexpression was only related to histologic grade (<it>P </it>< 0.05, respectively). In SCC, correlations were evident between EpCAM overexpression and TNM stage (<it>P </it>= 0.01), and between TROP2 overexpression and pathologic T stage (<it>P </it>= 0.02). EpCAM overexpression showed no significance with overall survival in AdC and SCC patients. However, TROP2 overexpression in AdC had a positive influence on overall survival (<it>P </it>= 0.02) and disease-free survival (<it>P </it>= 0.03). In particular, AdC patients with stage II or III showed better overall survival (<it>P </it>= 0.05) and disease-free survival (<it>P </it>= 0.04).</p> <p>Conclusions</p> <p>While EpCAM and TROP2 show weak and non-complete membranous staining in normal bronchial epithelium and pneumocyte, their complete membranous expression in carcinoma suggests their role in carcinogenesis. EpCAM and TROP2 were more frequently overexpressed in SCC. EpCAM overexpression had no prognostic value in this study, but TROP2 overexpression showed better survival in AdC patients and might be a better prognostic marker in advanced stage AdC.</p

    Is the Low-Thalidomide Dose MPT Regimen Beneficial?

    Get PDF

    Irradiation of Shell Egg on the Physicochemical and Functional Properties of Liquid Egg White

    Get PDF
    The effect of irradiation of shell eggs on the physiochemical and functional properties, and color and textural parameters of liquid egg white during storage were determined. Shell eggs were irradiated at 0, 2.5, 5, or 10 kGy using a linear accelerator. Viscosity, pH, turbidity, foaming properties, color, and volatile profile of liquid egg white, and color and texture properties of cooked egg white were determined at 0, 7, and 14 days of storage. Irradiation increased the turbidity but decreased viscosity of liquid egg white. Foaming capacity and foam stability were not affected by irradiation at lower dose (2.5 kGy), but were deteriorated at higher doses (≥ 5.0 kGy) of irradiation. Sulfur-containing volatiles were generated by irradiation and their amounts increased as the irradiation dose increased. However, the sulfur volatiles disappeared during storage under aerobic conditions. Lightness (L* value) and yellowness (b* value) decreased, but greenness (-a * value) increased in cooked egg white in irradiation dose-dependent manners. All textural parameters (hardness, adhesiveness, cohesiveness, chewiness, and resilience) of cooked egg white increased as the irradiation dose increased, but those changes were marginal. Our results indicated that irradiation of shell egg at lower doses (up to 2.5 kGy) had little negative impact on the physiochemical and functional properties of liquid egg white, but can improve the efficiency of egg processing due to its viscosity-lowering effect. Therefore, irradiation of shell eggs at the lower doses has high potential to be used by egg processing industry to improve the safety of liquid egg without compensating its quality

    Role of G{alpha}12 and G{alpha}13 as Novel Switches for the Activity of Nrf2, a Key Antioxidative Transcription Factor

    Get PDF
    G{alpha}12 and G{alpha}13 function as molecular regulators responding to extracellular stimuli. NF-E2-related factor 2 (Nrf2) is involved in a protective adaptive response to oxidative stress. This study investigated the regulation of Nrf2 by G{alpha}12 and G{alpha}13. A deficiency of G{alpha}12, but not of G{alpha}13, enhanced Nrf2 activity and target gene transactivation in embryo fibroblasts. In mice, G{alpha}12 knockout activated Nrf2 and thereby facilitated heme catabolism to bilirubin and its glucuronosyl conjugations. An oligonucleotide microarray demonstrated the transactivation of Nrf2 target genes by G{alpha}12 gene knockout. G{alpha}12 deficiency reduced Jun N-terminal protein kinase (JNK)-dependent Nrf2 ubiquitination required for proteasomal degradation, and so did G{alpha}13 deficiency. The absence of G{alpha}12, but not of G{alpha}13, increased protein kinase C {delta} (PKC {delta}) activation and the PKC {delta}-mediated serine phosphorylation of Nrf2. G{alpha}13 gene knockout or knockdown abrogated the Nrf2 phosphorylation induced by G{alpha}12 deficiency, suggesting that relief from G{alpha}12 repression leads to the G{alpha}13-mediated activation of Nrf2. Constitutive activation of G{alpha}13 promoted Nrf2 activity and target gene induction via Rho-mediated PKC {delta} activation, corroborating positive regulation by G{alpha}13. In summary, G{alpha}12 and G{alpha}13 transmit a JNK-dependent signal for Nrf2 ubiquitination, whereas G{alpha}13 regulates Rho-PKC {delta}-mediated Nrf2 phosphorylation, which is negatively balanced by G{alpha}12

    Low myelin-related values in the fornix and thalamus of 7 Tesla MRI of major depressive disorder patients

    Get PDF
    IntroductionAbnormalities in myelin are believed to be one of the important causes of major depressive disorder, and it is becoming important to more accurately quantify myelin in in vivo magnetic resonance imaging of major depressive disorder patients. We aimed to investigate the difference in myelin concentration in the white matter and subcortical areas using new quantitative myelin-related maps of high-resolution 7 Tesla (7 T) magnetic resonance imaging between patients with major depressive disorder and healthy controls.MethodsMyelin-related comparisons of the white matter and nearby subcortical regions were conducted between healthy controls (n = 36) and patients with major depressive disorder (n = 34). Smoothed quantitative ratio (sq-Ratio) myelin-related maps were created using the multi-echo magnetization-prepared two rapid gradient echoes (ME-MP2RAGE) sequence of the T1 and T2* images of 7 T magnetic resonance imaging. Differences in the myelin-related values of the regions of interest between the two groups were analyzed using a two-sample t-test, and multiple comparison corrections were performed using the false discovery rate.ResultsThe average sq-Ratio myelin-related values were 2.62% higher in the white matter and 2.26% higher in the subcortical regions of the healthy controls group than in the major depressive disorder group. In the group analysis of the healthy control and major depressive disorder groups, the sq-Ratio myelin-related values were significantly different in the fornix area of the white matter (false discovery rate-corrected p = 0.012). In addition, significant differences were observed in both the left (false discovery rate-corrected p = 0.04) and right thalamus (false discovery rate-corrected p = 0.040) among the subcortical regions.DiscussionThe average sq-ratio myelin-related value and sq-ratio myelin-related values in the fornix of the white matter and both thalami were higher in the healthy controls group than in the major depressive disorder group. We look forward to replicating our findings in other populations using larger sample sizes

    EFFECTS OF SALINITY ON OXYGEN CONSUMPTION AND BLOOD PROPERTIES OF YOUNG GREY MULLETS Mugil cephalus

    Get PDF
    Oxygen consumption (OC) is one of important factors in aquaculture activities, as the oxygen is a vital condition for all the organisms living in the water and having an aerobic type of respiration. OC is the preferred method for measuring and reporting the metabolic rate in fish. The aims of this study were to evaluate the effects of salinity on OC and blood properties of grey mullets. Five experimental groups were conducted to measure OC and blood properties of grey mullets Mugil cephalus (BW: 187.9 ± 45.8 g) according to salinity (30→0 psu, 0→30 psu) changes; SDS: fish reared in seawater (SW, 30 psu) directly shifted to SW, SGF: SW fish gradually shifted to freshwater (FW, 0 psu), SDF: SW fish directly shifted to FW, FDF: FW fish directly shifted to FW, and FDS: FW fish directly shifted to SW. The result showed that OC tended to decrease in the groups of SW fish shifted to FW showing 194.5 mg O2/kg/h at 25°C in SDS to 82.4 mg O2/kg/h at 15°C in SGF. On the contrary, OC increased in the groups of FW fish shifted to SW showing 80.5 mg O2/kg/h at 15°C in FDF to 184.0 mg O2/kg/h at 25°C in FDS. Cortisol levels at the end of experiments were rapidly increased with the lowering salinities in SW fish shifted to FW showing 20.6 ng/mL in SDS to 316.2 ng/mL in SDF, while those were decreased with the increasing salinities in FW fish shifted to SW showing 40.2 ng/mL in FDF to 10.3 ng/mL in FDS. However, glucose levels showed no significant differences among all experimental groups. Based on the information from this study, aquaculture of grey mullet might be applied or developed in freshwater due to its osmotic adaptation ability
    • …
    corecore