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Introduction: Abnormalities in myelin are believed to be one of the important 
causes of major depressive disorder, and it is becoming important to more 
accurately quantify myelin in in vivo magnetic resonance imaging of major 
depressive disorder patients. We  aimed to investigate the difference in myelin 
concentration in the white matter and subcortical areas using new quantitative 
myelin-related maps of high-resolution 7 Tesla (7  T) magnetic resonance imaging 
between patients with major depressive disorder and healthy controls.

Methods: Myelin-related comparisons of the white matter and nearby subcortical 
regions were conducted between healthy controls (n  =  36) and patients with 
major depressive disorder (n =  34). Smoothed quantitative ratio (sq-Ratio) myelin-
related maps were created using the multi-echo magnetization-prepared two 
rapid gradient echoes (ME-MP2RAGE) sequence of the T1 and T2* images of 
7  T magnetic resonance imaging. Differences in the myelin-related values of the 
regions of interest between the two groups were analyzed using a two-sample 
t-test, and multiple comparison corrections were performed using the false 
discovery rate.

Results: The average sq-Ratio myelin-related values were 2.62% higher in the white 
matter and 2.26% higher in the subcortical regions of the healthy controls group 
than in the major depressive disorder group. In the group analysis of the healthy 
control and major depressive disorder groups, the sq-Ratio myelin-related values 
were significantly different in the fornix area of the white matter (false discovery 
rate-corrected p  =  0.012). In addition, significant differences were observed in 
both the left (false discovery rate-corrected p =  0.04) and right thalamus (false 
discovery rate-corrected p =  0.040) among the subcortical regions.

Discussion: The average sq-ratio myelin-related value and sq-ratio myelin-
related values in the fornix of the white matter and both thalami were higher in 
the healthy controls group than in the major depressive disorder group. We look 
forward to replicating our findings in other populations using larger sample sizes.
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1. Introduction

Major depressive disorder (MDD) is a psychiatric disorder and 
serious illness that significantly impairs quality of life and is the most 
common cause of suicide (Cho et al., 2016). In 2008, the World Health 
Organization ranked MDD as the third most common global disease 
and predicted that it would become the most common in 2030 (World 
Health Organization, 2008). The causes of MDD are abnormalities in 
neurotransmitters, such as the monoamine hypothesis; hypothalamic–
pituitary–adrenal axis changes; abnormalities in neuronal networks; 
genetic factors; stressors; and experiences such as childhood abuse; 
however, the biological mechanisms of depression are still not 
completely understood.

Recently, there has been increased interest in the myelin sheath 
and oligodendrocyte lineage cells, and their role in the central nervous 
system (CNS; Zhou et al., 2021). Oligodendrocyte lineage cells is the 
collective term for oligodendrocyte progenitor cells and mature 
oligodendrocytes, which form myelin sheaths around axons and are 
known to physically and metabolically support axons and mediate the 
process of neuroplasticity (Zhou et  al., 2021). In this manner, 
oligodendrocyte lineage cells form the white matter, which is a major 
component of the CNS. Myelin wraps around the axons of the neurons 
to maintain the efficiency of brain function, maintain nerve fiber 
integrity, and accelerate the propagation of action potentials (Salzer, 
2015). The role of myelin in several neuropsychiatric disorders, such 
as multiple sclerosis, acute disseminated encephalomyelitis, 
depression, and schizophrenia, has been studied (Van der Knaap and 
Valk, 2005). Disordered synaptic transmission may cause abnormal 
brain development and major psychiatric disorders, such as MDD and 
schizophrenia (Davis et al., 2003). Myelin has also been implicated in 
the pathogenesis of depression (Zhou et al., 2021), and numerous 
studies have implicated myelination as a critical process affecting 
neuronal connectivity (Davis et al., 2003; Mighdoll et al., 2015; Moura 
et al., 2021).

In MDD, brain imaging studies have used techniques such as 
structural abnormalities, functional connectivity, and diffusion tensor 
imaging depending on the objectives and hypotheses of the study. 
Recent brain imaging studies have shown that abnormalities in white 
matter hyperintensities and myelin integrity start to change in the 
prefrontal areas in the early stages of depression (Cole et al., 2012). In 
previous studies, white matter tract regions in various brain regions 
decreased significantly (Taylor et al., 2004; Aston et al., 2005; Bae et al., 
2006; Benedetti et al., 2011; Zhang et al., 2013; Bhatia et al., 2018; 
Williams et al., 2019). Samples from patients have shown a reduction 
in myelin content and axon numbers in various brain areas (Regenold 
et al., 2007; Tham et al., 2011). This suggests that individuals with 
depression may have differences in the structure and function of 
myelin in the brain compared with those without depression, 
particularly in the prefrontal cortex, which is involved in emotional 
regulation, decision-making, and other cognitive processes.

Myelin abnormalities are an important cause of depression, and it 
is important to accurately quantify myelin using in vivo magnetic 

resonance imaging (MRI) for more accurate research into the 
pathogenesis of depression. In a previous study, we  introduced a 
myelin-related mapping technique to obtain quantitative maps using 
7 Tesla MRI (Shim et al., 2022). In this study, the term “quantitative 
maps” refers to maps derived from quantitative R1 and T2* images, 
which are not indicative of the anatomical content of myelin, but 
rather obtained through imaging parameters that are independent and 
quantitative in MRI. This technique improves the myelin contrast 
between the myelinated and unmyelinated areas by dividing the R1 
and T2* images in which the received bias field is removed. This 
enables the quantification of myelin-related density using R1 and T2* 
images instead of weighted images with varying signal intensity values 
according to the selected MR parameters. In addition, this technique 
uses a signal MR pulse sequence, such as multi-echo magnetization-
prepared by two rapid gradient-echo (ME-MP2RAGE) sequences, 
which is not necessary for further image registration (Metere et al., 
2017). Two or more MR pulse sequences are used to obtain R1 and 
T2* images, requiring a long acquisition time and further correction 
of the motion artifacts. Therefore, this technique can provide objective 
and accurate quantification of myelin using high-resolution 
quantitative images in a relatively short scan time (Shim et al., 2022), 
and can be applied to the study of various neuropsychiatric diseases 
related to demyelination, including depression.

Several quantitative MRI (qMRI) methods have been developed 
and used to measure myelin-related properties of white matter in 
patients with MDD (Sacchet and Gotlib, 2017). Sacchet et al. measured 
in vivo myelin concentration through R1 (1/T1), compared myelin 
concentration between patients with MDD and healthy controls, and 
revealed that patients with MDD had lower levels of myelin at the 
whole-brain level and in the nucleus accumbens (Sacchet and Gotlib, 
2017). Hou et al. compared the myelin levels between patients with 
MDD and controls using an inhomogeneous magnetization transfer 
method, which is a surrogate measure of myelin content, and showed 
myelin impairment in the fornix, left anterior limb of the internal 
capsule, and left sagittal striatum (Hou et al., 2021). We aimed to 
determine whether myelin concentration in the white matter and 
subcortical areas differs between patients with MDD and normal 
controls using 7 T high-resolution MRI.

2. Materials and methods

2.1. Subjects

Thirty-four patients with MDD and 36 healthy controls (HCs) 
were included in the study after providing written informed consent. 
Age, sex, and duration of education were matched between the two 
groups. The study was approved by the Institutional Review Board of 
Gil Medical Center (IRB No. GDIRB2018-005 and GDIRB2020-207). 
One board-certified psychiatrist (SGK) interviewed all the participants 
and assessed their eligibility for the study using a structured clinical 
interview based on the fifth edition of the Diagnostic and Statistical 
Manual of Mental Disorders (DSM-5) (SCID-5; First et al., 2016). 
Patients meeting the DSM-5 diagnostic criteria for MDD were 
included in the MDD group.

The common exclusion criteria for MDD and HC were as follows: 
age < 19 or > 65 years; left-handed use in the Edinburgh Handedness 
Test (Oldfield, 1971); current serious suicide risk; previous abnormal 

Abbreviations: BDI, beck depression inventory; CNS, central nervous system; DTI, 

diffusion tensor imaging; HC, healthy control; MDD, major depressive disorder; 

MRI, magnetic resonance imaging; ROI, regions of interest; SPM, statistical 

parametric mapping; SSI, scale for suicide ideation.
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findings on brain imaging; contraindications to MRI (e.g., metals in 
the body); pregnancy or lactation; major or unstable medical and 
neurological disorders within the past year; history of head trauma; 
substance use disorder within the past year; intellectual disability; 
personality disorder; and neurocognitive disorders. Additional 
exclusion criteria for MDDs were comorbidities of major psychiatric 
disorders (i.e., schizophrenia spectrum and other psychotic disorders, 
obsessive–compulsive and related disorders, substance-related and 
addictive disorders, major anxiety disorders, and disruptive, impulse 
control, and conduct disorders). Further exclusion criteria for the HCs 
were as follows: Hamilton Depression Rating Scale 17 items (HDRS-
17) total score > 6; psychiatric history; history of taking psychotropic 
medications; and first-degree relatives with schizophrenia, MDD, or 
bipolar disorder.

Depression severity was quantified using the HDRS-17 (Yi et al., 
2005), Clinical Global Impression of Severity (CGI-S) (Busner and 
Targum, 2007), and Beck Depression Inventory (BDI) (Rhee et al., 
1995) at baseline and on the MRI scanning date. Based on the 
HDRS-17 score, depression severity was classified as severe (≥25), 
moderate (18–24), mild (7–17), and no depression (0–6). We assessed 
depressive symptoms on the same day as the MRI scan.

2.2. Data acquisition

Brain images were acquired with an eight-channel phased array 
coil using a 7 T MRI system (Magnetom, Siemens, Erlangen, 
Germany). A prototype multi-echo magnetization-prepared two rapid 
gradient-echo (ME-MP2RAGE) sequence was used (Metere et al., 
2017), and sagittal images were acquired using the following 
parameters: repetition time (TR) = 8,000 ms; four echo times 
(TEs) = 3.46, 7.28, 11.1, and 14.92 ms; two inversion times 
(TIs) = 1000/3200 ms; flip angle = 4°; field of view 
(FOV) = 166 × 166 × 135.2 mm3 with nominal isotropic resolutions of 
0.65 mm; matrix size = 256 × 256; 208 slices along the right–left axis; 
bandwidth = 280 Hz/px; bipolar readout; generalized auto-calibrating 
partially parallel acquisitions (GRAPPA) with accelerating factor = 3 
(50 reference lines); and 7/8 and 6/8 partial Fourier factors along the 
phase-encoding and slice-encoding directions, respectively, yielding 
an acquisition time (TA) = 14 min 16 s.

2.3. Image processing to acquire individual 
sq-ratio myelin-related maps

Images acquired from the ME-MP2RAGE sequence were used to 
reconstruct the T1 and T2* images. The T1 images were generated 
immediately after scanning through the reconstruction process 
provided by the sequence, but the R2* (= 1/T2*) images were 
reconstructed using the Fit T2 or T2 Star MRI data program1 with 
multiple echo images obtained after the second inversion 
radiofrequency pulse.

To generate myelin-related maps, T1 and R2* images were 
normalized using a voxel size of 0.5 mm to the standard space and the 

1 https://github.com/mjt320/T2Star

Montreal Neurological Institute (MNI) 152 template using statistical 
parametric mapping (SPM) 12 (Ashburner et al., 2020). T2* maps 
were generated from normalized R2* maps, and the T1 and T2* ranges 
were set to 700–4,000 ms and 1–60 ms (Metere et  al., 2017), 
respectively. Quantitative ratio (q-Ratio) myelin-related maps were 
generated by dividing the R1 images by the T2* images (Shim 
et al., 2022).

To remove artifacts around the outer boundary of the brain 
images, which could make the analysis of myelin-related values 
difficult, we  used weighted ratio (w-Ratio) images in which 
T2*-weighted (T2*W) images were divided from T1-weighted (T1W) 
images, providing a better contrast between white and gray matter 
(Shim et al., 2022). During preprocessing, the T1W and T2*W images 
obtained using the ME-MP2RAGE sequence were normalized to 
0.5 mm on the MNI 152 template in the same manner as the T1 and 
R2* images. The resulting w-Ratio myelin-related images were 
generated by dividing the normalized T2*W image by the normalized 
T1W image (Figure 1). The standard T1 image provided by the SPM 
was segmented and divided into gray and white matter, which were 
used as mask images to reconstruct the w-ratio myelin-related images. 
Furthermore, the artifacts in the w-Ratio myelin-related images were 
removed after identifying outliers using the quartile method 
(Rousseeuw and Hubert, 2011).

Finally, the artifact-removed w-Ratio myelin-related image was 
used as a mask image to create a q-Ratio myelin-related image. The 
individual images were then smoothed with an isotropic three-
dimensional Gaussian kernel of 1 mm full width at half maximum to 
obtain smoothed q-Ratio (sq-Ratio) myelin-related maps.

2.4. Group analysis and statistical analysis

We analyzed the myelin-related differences in the normal HCs 
and MDD groups, focusing primarily on the white matter, where 
myelin is predominantly located, as well as the nearby subcortical 
areas. We used the Johns Hopkins University (JHU) ICBM-DTI-81 
white matter label atlas to analyze the white matter (Mori et al., 2008). 
To observe myelin in the subcortical and cerebellar areas adjacent to 
the white matter (Zhang F. F. et  al., 2018), which are considered 
important in the recent onset mechanism of depression, we used the 
Automated Anatomical Labeling Atlas 2 (AAL2; Rolls et al., 2015). 
Both the JHU ICBM-DTI-81 white matter labels atlas and AAL2 were 
normalized to 0.5 mm, using Matlab 2018b (The MathWorks Inc., 
Natick, MA).

Differences in sq-Ratio myelin-related values between the MDD 
and HC groups in 50 white matter regions of interest (ROIs) and 40 
subcortical ROIs were analyzed using Welch’s t-test, and multiple 
comparison corrections were performed using the false discovery rate 
(FDR; Benjamini and Hochberg, 1995). To further examine the 
impact of medication in the MDD group, we divided it into those 
taking and those not taking antidepressants, and used the same 
statistical methods to compare the two groups by medication status. 
The statistical threshold was set at p < 0.05. In addition, in the MDD 
group, we  performed a partial correlation analysis (p  < 0.05, 
two-tailed) to determine the statistical association of sq-Ratio myelin-
related values (mean values in the subcortex, white matter, and regions 
that were significant when comparing the MDD and HC groups) with 
key clinical variables such as depression severity and duration of 
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illness (Chen et  al., 2022). All statistical analyses were performed 
using SPSS ver. 25 (IBM Corp., Armonk, NY) and Jamovi ver. 2.2.5 
(The Jamovi Project [2021]).

3. Results

The demographic and clinical characteristics of the MDD and HC 
groups and their comparisons are shown in Table 1. There were no 
significant differences in age, sex ratio, or duration of education 
between the two groups. As expected, the MDD patients had 
significantly more severe depressive symptoms than the HC group, as 
measured using the HDRS and BDI (p < 0.001; Table 1). Based on 
HDRS scores, the severity of depression in the MDD group was 
severe, moderate, and mild in 2 (6%), 17 (50%), and 13 patients (38%), 
respectively. In addition, 28 patients in the MDD group were taking 
antidepressants, 14 of whom were taking more than one type thereof, 
and the antidepressants were escitalopram (n = 10), trazodon (n = 8), 
bupropion (n  = 5), desvenlafaxine (n  = 4), vortioxetine (n  = 3), 
fluoxetine (n = 3), mirtazapine (n = 3), paroxetine (n = 3), milnacipran 
(n = 2), setraline (n = 1), agomelatine (n = 1), and imipramine (n = 1). 
Furthermore, in the MDD group, the average duration of depression 
was 5.53 years, and 11 patients had history of a previous suicide 
attempt. The BHS, CGI, and Scale for Suicide Ideation (SSI) scores 
were higher in patients with MDD than in the HCs (p  < 0.001; 
Table 1).

We compared the sq-Ratio myelin-related values between the HC 
and MDD groups in the white matter and subcortical regions. The 
average sq-ratio myelin-related value of the HC group was higher than 
that of the MDD group in both white matter and subcortical regions. 

The average sq-Ratio myelin-related value for the entire ROI in the 
white matter was 2.62% higher in HCs than in MDD patients (HC, 
23.298 ± 1.374 [mean ± standard deviation]; MDD, 22.703 ± 1.480; 
p  = 0.085). Additionally, in the subcortical regions, the value was 
2.26% larger in HCs than in MDD patients (HC, 17.862 ± 0.966; MDD, 
17.467 ± 1.280; p = 0.148; Tables 2, 3). Higher myelin-related signals of 
HCs compared to MDD patients were also clear (Figure 2).

In the group analysis between HC and MDD, the sq-Ratio myelin-
related values were significantly different in the fornix (FX) area of the 
white matter (FDR-corrected p  = 0.012; HC, 19.752 ± 3.39; MDD, 
16.277 ± 4.018; Table 2). A significant difference was observed in both 
the left and right thalamus areas of the subcortical regions 
(FDR-corrected p = 0.040; left thalamus: HC, 27.192 ± 2.534; MDD, 
25.038 ± 2.785; FDR-corrected p  = 0.040; right thalamus: HC, 
26.297 ± 2.372; MDD, 24.372 ± 2.698; Table 3). An additional analysis 
comparing medication status within the MDD group showed no 
significant differences in each ROI (Supplementary Tables S1, S2). 
Moreover, in the MDD group, the number of suicide attempts showed 
significant positive correlations with the mean of sq-Ratio myelin-
related values in the subcortex (r = 0.491, p = 0.004) and white matter 
(r = 0.415, p = 0.018; Supplementary Table S3).

4. Discussion

The average sq-Ratio myelin-related value of the HC group was 
higher than that of the MDD group in both the white matter and 
subcortical regions. In addition, the myelin-related sq-Ratio values 
were higher in the HC group than in the MDD group in the fornix 
areas of the white matter and both thalami.

FIGURE 1

Schematic diagram of smoothed quantitative ratio (sq-Ratio) myelin-related mapping. For the mask image, we first created a weighted ratio (w-Ratio) 
myelin-related map by dividing the T1-weighted image (T1WI) and T2*-weighted image (T2*WI) obtained from the ME-MP2RAGE sequence, and then 
applied the quartile method to create an artifact-removed w-Ratio map. We applied this mask image to the q-ratio myelin-related map (q-ratio) to 
create an artifact-free map, which was then smoothed to 1  mm. GM, gray matter; WM, white matter.
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Hou et al. compared myelin in patients with recurrent MDD and 
HCs using the inhomogeneous magnetization transfer technique 
developed through the myelin imaging method and showed lower 
quantitative inhomogeneous magnetization transfer values in the 
fornix in patients with recurrent MDD (Hou et al., 2021). Additionally, 
in patients with recurrent MDD, quantitative inhomogeneous 
magnetization transfer values in the fornix and quantitative myelin 
transfer values were negatively correlated with disease duration, 
indicating a decrease in myelin levels as the disease progressed (Hou 
et al., 2021). Geng et al. also found white matter abnormalities in the 
fornix, which connects the prefrontal cortex and hippocampus, in 
patients with early onset MDD, using a resting-state fMRI study (Geng 
et al., 2016). In a previous DTI study, Li et al. reported white matter 
disruptions in the fornix and the hippocampal cingulum during late-
life depression (Li et al., 2014). The fornix is a part of the limbic system 
and is a C-shaped bundle of nerve fibers in the brain, which is 
comprised mostly of efferent fibers from the hippocampus (Griffiths 
et  al., 2009). Hippocampal fibers project via the fornix to the 
orbitofrontal cortex and anterior cingulate, ventral striatum, septal, 
and preoptic nuclei. Less prominent connections to the anterior 
thalamic nucleus and hypothalamus also exist (Griffiths et al., 2009). 
The fornix is a channel for important neurotransmitters such as GABA 
and acetylcholine, and electrical activity such as theta rhythms in the 
hippocampus, septal nuclei, Broca’s band, and deep brain structures 
(Rawlins et al., 1979; Cassel et al., 1997; Hasselmo, 1999). Therefore, 
the reduction in myelin in depression patients observed in this study 
may be  evidence of the pathophysiology of MDD by impairing 
connections between brain regions such as the hippocampus and 

prefrontal cortex, which are important for depression and mental 
functioning. Our study also showed reduced myelin levels in the 
thalamus of patients with MDD. To the best of our knowledge, there 
have been no reports of quantitative abnormalities of thalamic myelin 
in patients with depression. However, previous studies have provided 
indirect evidence of reduced myelin levels in the thalamus of patients 
with depression. Zhang et al. (2021) reported a larger T1 in the left 
thalamus in patients with MDD and insisted that this finding could 
be  related to abnormal development of the thalamus, such as 
microstructural proliferation and myelination (Zhang et al., 2022). 
Jiang et al. reported higher serum levels of myelin oligodendrocyte 
glycoprotein and myelin-associated glycoprotein, which are related to 
demyelination in patients with MDD, and decreased fractional 
anisotropy and axial diffusivity in the white matter of the bilateral 
thalamus (Jiang et al., 2018). They reported an association between an 
increase in oligodendrocyte glycoprotein and myelin-associated 
glycoprotein levels and a decrease in myelin levels in brain regions 
such as the thalamus (Jiang et al., 2018). The thalamus is a key node 
in the limbic–cortical-striatal-pallidal-thalamic circuit (Drevets et al., 
1992). The thalamus is anatomically interconnected with the 
prefrontal cortex, striatum, and amygdala, and its reciprocal 
connections with cortical and subcortical regions facilitate the 
exchange of subcortical information with the cortex (Price and 
Drevets, 2010). Previous neuroimaging findings have shown thalamic 
involvement in the macroscopic structural abnormalities associated 
with depression. Specifically, diffusion tensor imaging (DTI) studies 
have shown abnormal structural connectivity of the white matter 
within the thalamofrontal pathway in MDD patients (Jia et al., 2014; 
Korgaonkar et al., 2014; Long et al., 2015; Myung et al., 2016).

Previous studies comparing patients with MDD with controls by 
quantifying myelin have found reduced myelin at the whole-brain 
level, nucleus accumbens, fornix, left anterior limb of the internal 
capsule, and left sagittal striatum in patients with MDD (Sacchet and 
Gotlib, 2017; Hou et al., 2021). Postmortem studies on human brains 
with depression also showed lower intensity of myelin staining in the 
dorsolateral prefrontal cortex regions in MDD patients and unipolar 
and bipolar affective disorders (Regenold et  al., 2007; Lake et  al., 
2017). Although the brain regions showing differences between 
groups differed among studies, most have shown decreased myelin 
levels in MDD. There are several hypotheses regarding myelin-related 
changes in depression, but it seems that stress causes structural 
alterations in myelin, which in turn may trigger depression (Smaga, 
2022). It is possible that the chronic stress associated with depression 
contributes to decreased myelin levels in the thalamus. Previous 
mouse experiments have found that chronic social defeat stress causes 
downregulation of myelin-related genes and is associated with an 
altered myelin structure (Lehmann et  al., 2017), which has been 
reported to cause depression-like behavior (Birey et  al., 2015). 
Oligodendroglia defects that causes myelin disruption and proposed 
mechanisms associated with depression are increased levels of 
circulating corticosterone due to overactivation of HPA axis in stress, 
pro-inflammatory cytokines and reactive oxygen species released by 
activated microglia, and epigenetic factors including histone/DNA 
modification and microRNA (Lutz et al., 2017; Zhang L. et al., 2018; 
Boda, 2021). Consistent with this mechanism, previous studies suggest 
that antidepressant use in depressed patients might promote the repair 
of myelin in the brain (Haroutunian et  al., 2014; Boda, 2021). In 
addition, there are studies showing a correlation between myelin 

TABLE 1 Demographic and clinical characteristics of the participants.

Clinical variables MDD 
(n =  34)

HC 
(n =  36)

Statistics

Age at scan, years 

(mean ± SD)
35.3 ± 13.9 35.3 ± 12.4 t = 0.01, p = 0.990a

Sex (male:female) 10:24 10:26 χ2 = 0.02, p = 0.880b

Education, years 

(mean ± SD)
14.1 ± 2.4 14.8 ± 1.8 t = 1.36, p = 0.179a

Duration of illness, years 

(mean ± SD)
5.7 ± 5.3 N/A N/A

Clinical scales at MRI scanning

HDRS-17 score 

(mean ± SD)
16.4 ± 6.2 2.4 ± 2.3

t = −12.51, 

p < 0.001a

BDI score (mean ± SD) 27.1 ± 13.2 3.3 ± 3.6
t = −10.17, 

p < 0.001a

BHS score (mean ± SD) 11.7 ± 5.6 2.1 ± 1.4
t = −9.76, 

p < 0.001a

CGI-S score (mean ± SD) 4.2 ± 1.2 1.0 ± 0.1
t = −15.58, 

p < 0.001a

SSI score (mean ± SD) 15.3 ± 8.2 0.9 ± 1.5
t = −10.05, 

p < 0.001a

aStudent’s t-test; b Chi-square test.
Data are presented as means ± standard deviation or number (percentage), unless otherwise 
indicated. BDI, Beck Depression Inventory; BHS, Beck Hopelessness Scale; CGI-S, Clinical 
Global Impression Severity Scale; HC, Healthy Control; HDRS, Hamilton Depression Rating 
Scale; MDD, Major Depressive Disorder; MRI, magnetic resonance imaging; SD, Standard 
Deviation; SSI, Scale for Suicide Ideation.
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TABLE 2 Smoothed quantitative ratio (sq-Ratio) myelin-related values and group analysis results in subcortical regions.

ROI name HC MDD t p p-FDR

Mean  ±  SD Mean  ±  SD

Hippocampus_L 15.466 ± 1.543 14.812 ± 1.806 1.623 0.109 0.468

Hippocampus_R 16.51 ± 1.533 15.765 ± 2.071 1.702 0.094 0.468

ParaHippocampal_L 16.251 ± 2.037 16.619 ± 2.754 −0.631 0.53 0.782

ParaHippocampal_R 17.253 ± 2.318 16.983 ± 2.805 0.436 0.664 0.782

Amygdala_L 15.326 ± 2.373 14.684 ± 2.902 1.011 0.316 0.700

Amygdala_R 16.271 ± 2.362 15.594 ± 2.204 1.241 0.219 0.584

Caudate_L 22.531 ± 2.56 21.484 ± 2.925 1.59 0.117 0.468

Caudate_R 23.379 ± 2.406 22.059 ± 3.217 1.936 0.058 0.387

Putamen_L 31.824 ± 4.38 30.311 ± 4.175 1.48 0.144 0.480

Putamen_R 31.979 ± 4.065 30.715 ± 4.224 1.274 0.207 0.584

Pallidum_L 44.291 ± 5.608 43.005 ± 5.271 0.99 0.326 0.700

Pallidum_R 44.963 ± 4.992 43.685 ± 5.611 1.004 0.319 0.700

Thalamus_L 27.192 ± 2.534 25.038 ± 2.785 3.378 0.001 0.040

Thalamus_R 26.297 ± 2.372 24.372 ± 2.698 3.163 0.002 0.040

Cerebelum_Crus1_L 18.947 ± 1.871 19.416 ± 2.811 −0.817 0.417 0.725

Cerebelum_Crus1_R 17.803 ± 1.662 18.424 ± 2.428 −1.243 0.219 0.584

Cerebelum_Crus2_L 20.029 ± 3.066 19.481 ± 2.965 0.759 0.45 0.750

Cerebelum_Crus2_R 19.104 ± 2.513 19.239 ± 3.203 −0.196 0.845 0.867

Cerebelum_3_L 11.596 ± 1.217 11.414 ± 1.442 0.57 0.57 0.782

Cerebelum_3_R 10.541 ± 1.048 10.382 ± 1.374 0.54 0.591 0.782

Cerebelum_4_5_L 12.214 ± 1.024 12.107 ± 1.331 0.375 0.709 0.796

Cerebelum_4_5_R 14.33 ± 1.191 14.13 ± 1.894 0.525 0.602 0.782

Cerebelum_6_L 17.1 ± 1.643 17.536 ± 2.146 −0.949 0.346 0.700

Cerebelum_6_R 17.126 ± 1.496 17.506 ± 2.073 −0.876 0.385 0.700

Cerebelum_7b_L 17.091 ± 2.313 15.948 ± 2.629 1.927 0.058 0.387

Cerebelum_7b_R 17.759 ± 2.355 17.22 ± 2.46 0.935 0.353 0.700

Cerebelum_8_L 17.472 ± 2.083 16.446 ± 1.744 2.239 0.028 0.280

Cerebelum_8_R 16.474 ± 1.454 15.599 ± 1.466 2.504 0.015 0.200

Cerebelum_9_L 13.475 ± 1.149 13.478 ± 1.461 −0.01 0.992 0.992

Cerebelum_9_R 12.619 ± 0.894 12.377 ± 1.327 0.892 0.376 0.700

Cerebelum_10_L 11.567 ± 1.526 11.262 ± 2.363 0.637 0.527 0.782

Cerebelum_10_R 10.423 ± 1.299 10.229 ± 2.121 0.458 0.649 0.782

Vermis_1_2 7.409 ± 0.664 7.5 ± 1.305 −0.365 0.716 0.796

Vermis_3 8.01 ± 0.825 7.907 ± 1.118 0.436 0.665 0.782

Vermis_4_5 8.331 ± 0.862 8.206 ± 1.169 0.504 0.616 0.782

Vermis_6 10.208 ± 1.717 10.985 ± 2.106 −1.686 0.097 0.468

Vermis_7 16.408 ± 3.049 17.684 ± 3.879 −1.525 0.132 0.480

Vermis_8 17.343 ± 2.784 17.554 ± 3.55 −0.276 0.783 0.846

Vermis_9 16.962 ± 2.142 16.828 ± 3.164 0.206 0.838 0.867

Vermis_10 4.606 ± 0.577 4.686 ± 0.769 −0.489 0.627 0.782

HC: Mean sq-Ratio myelin-related values ± SD 17.862 ± 0.966

MDD: Mean sq-Ratio myelin-related values ± SD 17.467 ± 1.280

p-FDR marked with bold indicate statistically significant differences. Caudate, caudate nucleus; Cerebelum_10, lobule X of cerebellar hemisphere; Cerebelum_3, lobule III of cerebellar 
hemisphere; Cerebelum_4_5, lobule IV, V of cerebellar hemisphere; Cerebelum_6, lobule VI of cerebellar hemisphere; Cerebelum_7b, lobule VIIB of cerebellar hemisphere; Cerebelum_8, 
lobule VIII of cerebellar hemisphere; Cerebelum_9, lobule IX of cerebellar hemisphere; Cerebelum_Crus1, crus I of cerebellar hemisphere; Cerebelum_Crus2, crus II of cerebellar hemisphere; 
HC, healthy control; L, left; MDD, major depressive disorder; Pallidum, lenticular nucleus, pallidum; ParaHippocampal, parahippocampal gyrus; Putamen, lenticular nucleus, putamen; R, 
right; ROI, region of interest; SD, standard deviation; Vermis_1_2, lobule I, II of vermis; Vermis_3, lobule III of vermis; Vermis_4_5, lobule IV, V of vermis; Vermis_6, lobule VI of vermis; 
Vermis_7, lobule VII of vermis; Vermis_8, lobule VIII of vermis; Vermis_9, lobule IX of vermis; Vermis_10, lobule X of vermis.
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TABLE 3 Smoothed quantitative ratio (sq-Ratio) myelin-related values and group analysis results in white matter regions.

ROI name HC MDD t p p-FDR

Mean  ±  SD Mean  ±  SD

MCP 21.071 ± 1.955 20.468 ± 2.293 1.18 0.242 0.646

PCT 15.1 ± 1.802 15.52 ± 2.399 −0.824 0.413 0.646

GCC 26.389 ± 2.277 25.929 ± 2.241 0.851 0.398 0.646

BCC 26.941 ± 3.091 25.593 ± 4.92 1.363 0.178 0.525

SCC 29.783 ± 2.296 29.094 ± 3.582 0.952 0.345 0.646

FX 19.752 ± 3.39 16.277 ± 4.018 3.9 <0.001 0.012

CST R 11.114 ± 1.517 11.335 ± 2.225 −0.484 0.63 0.742

CST L 10.664 ± 1.635 10.797 ± 2.041 −0.299 0.766 0.851

ML R 11.288 ± 1.528 11.442 ± 2.116 −0.349 0.729 0.828

ML L 16.202 ± 1.957 16.328 ± 2.748 −0.221 0.826 0.878

ICP R 10.459 ± 0.975 10.456 ± 1.365 0.008 0.993 0.993

ICP L 11.772 ± 1.024 11.618 ± 1.6 0.478 0.634 0.742

SCP R 9.107 ± 0.878 9.357 ± 1.267 −0.954 0.344 0.646

SCP L 11.322 ± 1.053 11.546 ± 1.346 −0.773 0.443 0.670

CP R 15.004 ± 2.72 15.665 ± 3.511 −0.877 0.384 0.646

CP L 13.335 ± 2.307 13.711 ± 2.68 −0.628 0.532 0.739

ALIC R 35.934 ± 3.254 34.642 ± 2.606 1.839 0.07 0.380

ALIC L 35.383 ± 2.98 34.314 ± 2.345 1.674 0.099 0.380

PLIC R 31.261 ± 2.072 30.146 ± 3.125 1.749 0.086 0.380

PLIC L 31.102 ± 2.19 30.185 ± 3.037 1.442 0.154 0.496

RLIC R 30.712 ± 2.487 29.552 ± 3.192 1.689 0.096 0.380

RLIC L 32.078 ± 2.432 31.163 ± 2.903 1.426 0.159 0.496

ACR R 31.241 ± 2.637 31.094 ± 2.823 0.224 0.823 0.878

ACR L 29.405 ± 2.641 28.764 ± 2.734 0.997 0.323 0.646

SCR R 30.413 ± 1.959 29.181 ± 3.119 1.966 0.054 0.364

SCR L 29.283 ± 2.019 28.641 ± 2.949 1.057 0.295 0.646

PCR R 28.753 ± 2.276 27.998 ± 3.953 0.971 0.336 0.646

PCR L 27.936 ± 2.116 27.508 ± 4.286 0.525 0.602 0.742

PTR R 31.816 ± 3.337 29.438 ± 3.944 2.716 0.008 0.187

PTR L 31.728 ± 2.391 30.03 ± 3.65 2.288 0.026 0.216

SS R 21.461 ± 2.195 20.902 ± 3.141 0.859 0.394 0.646

SS L 20.895 ± 2.509 21.328 ± 2.752 −0.687 0.495 0.708

EC R 30.069 ± 3.319 28.727 ± 3.317 1.691 0.095 0.380

EC L 25.699 ± 2.436 24.388 ± 2.368 2.283 0.026 0.216

CGC R 28.506 ± 2.552 28.057 ± 1.593 0.888 0.378 0.646

CGC L 32.459 ± 2.218 32.345 ± 2.6 0.198 0.844 0.879

PHC R 17.611 ± 2.471 17.876 ± 2.083 −0.486 0.629 0.742

PHC L 16.928 ± 2.553 16.974 ± 2.483 −0.075 0.94 0.959

FX-ST R 24.388 ± 2.384 23.923 ± 3.202 0.686 0.495 0.708

FX-ST L 23.174 ± 2.239 22.284 ± 2.501 1.566 0.122 0.436

SLF R 33.176 ± 1.971 32.662 ± 2.836 0.876 0.385 0.646

SLF L 32.691 ± 1.916 32.388 ± 2.68 0.542 0.59 0.742

SFO R 33.393 ± 3.154 31.281 ± 3.958 2.46 0.017 0.208

(Continued)
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stability, microglial phagocytosis, and synaptic and plasticity-
associated proteins with microarray investigation of myelin in relation 
to suicide, similar to our findings that correlated the number of suicide 
attempts with sq-ratio values in the MDD group (Klempan et al., 2009; 
Zhang et al., 2021).

In this study, a reduced myelin concentration in the white matter 
and subcortical areas of MDD patients was revealed using a more 
accurate and faster myelin quantification technique in high-resolution 
7 T MRI. The sq-Ratio method used in this study enhances contrast 
by dividing R1 and T2* to detect the presence of myelin, but its 

FIGURE 2

Representative images for comparison of the mean sq-Ratio myelin-related values between the healthy control (HC) and major depressive disorder 
(MDD) groups. To compare the group average sq-Ratio myelin-related maps on the same scale, each group’s average sq-Ratio myelin-related map 
was normalized to have values between 0 and 1. When the normalized group average myelin-related maps were subtracted from each other, the HC 
– MDD myelin-related map had values ranging from −0.2 to 0.4, indicating that the average myelin-related value in the HC group was higher than that 
in the MDD group.

TABLE 3 (Continued)

ROI name HC MDD t p p-FDR

Mean  ±  SD Mean  ±  SD

SFO L 33.653 ± 2.78 33.045 ± 3.322 0.828 0.411 0.646

IFO R 26.981 ± 2.615 26.41 ± 2.849 0.873 0.386 0.646

IFO L 23.708 ± 2.179 23.432 ± 2.681 0.472 0.638 0.742

UF R 18.183 ± 2.36 16.642 ± 2.571 2.609 0.011 0.187

UF L 13.914 ± 2.26 14.182 ± 2.087 −0.515 0.608 0.742

Tapetum R 7.849 ± 1.341 6.922 ± 2.465 1.938 0.058 0.364

Tapetum L 3.823 ± 0.588 3.595 ± 1.225 0.986 0.329 0.646

HC: Mean sq-Ratio myelin-related values ± SD 23.298 ± 1.374

MDD: Mean sq-Ratio myelin-related values ± SD 22.703 ± 1.480

p-FDR marked with bold indicate statistically significant differences. ACR, anterior corona radiata; ALIC, anterior limb of internal capsule; BCC, body of corpus callosum; CGC, cingulum 
(cingulate gyrus); CP, cerebral peduncle; CST, corticospinal tract; EC, external capsule; FX, fornix (column and body of fornix); FX-ST, fornix (cres)/stria terminalis; GCC, genu of corpus 
callosum; HC, healthy control; ICP, inferior cerebellar peduncle; IFO, inferior fronto-occipital fasciculus; L, left; MCP, middle cerebellar peduncle; MDD, major depressive disorder; ML, 
medial lemniscus; PCR, posterior corona radiata; PCT, pontine crossing tract (a part of MCP); PHC, cingulum (hippocampus); PLIC, posterior limb of internal capsule; PTR, posterior 
thalamic radiation (including optic radiation); R,: right; RLIC, retrolenticular part of internal capsule; ROI, region of interest; SCC, splenium of corpus callosum; SCP, superior cerebellar 
peduncle; SCR, superior corona radiata; SD, standard deviation; SFO, superior fronto-occipital fasciculus; SLF, superior longitudinal fasciculus; SS, sagittal stratum (including inferior 
longitudinal fasciculus and IFO); UF, uncinate fasciculus.
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limitation is that it can be affected by iron content. Further research 
on iron content using T2* or quantitative susceptibility mapping is 
necessary. By incorporating iron content information obtained 
through such research as a covariate, it is expected that a more precise 
analysis of myelin can be conducted in terms of sq-Ratio myelin-
related values. Although there are many studies on decreased myelin 
levels in MDD, it is difficult to conclude that myelin reduction in 
MDD has been clearly demonstrated in the human brain. In the 
future, we look forward to replicating our results in other populations 
with larger sample sizes, and future studies on the mechanisms 
underlying myelin reduction in depression are also warranted. In 
addition, repeated studies in larger groups are needed to refine the 
relationship between psychiatric drugs, including antidepressants, and 
clinical variables such as suicide attempts, duration of illness, and 
severity of depression.
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