6,533 research outputs found

    Reliable Decision from Multiple Subtasks through Threshold Optimization: Content Moderation in the Wild

    Full text link
    Social media platforms struggle to protect users from harmful content through content moderation. These platforms have recently leveraged machine learning models to cope with the vast amount of user-generated content daily. Since moderation policies vary depending on countries and types of products, it is common to train and deploy the models per policy. However, this approach is highly inefficient, especially when the policies change, requiring dataset re-labeling and model re-training on the shifted data distribution. To alleviate this cost inefficiency, social media platforms often employ third-party content moderation services that provide prediction scores of multiple subtasks, such as predicting the existence of underage personnel, rude gestures, or weapons, instead of directly providing final moderation decisions. However, making a reliable automated moderation decision from the prediction scores of the multiple subtasks for a specific target policy has not been widely explored yet. In this study, we formulate real-world scenarios of content moderation and introduce a simple yet effective threshold optimization method that searches the optimal thresholds of the multiple subtasks to make a reliable moderation decision in a cost-effective way. Extensive experiments demonstrate that our approach shows better performance in content moderation compared to existing threshold optimization methods and heuristics.Comment: WSDM2023 (Oral Presentation

    Advanced Technologies for Large-Sized OLED Display

    Get PDF
    Five years have passed, since the first 55″ full high-definition (FHD) OLED TV fabricated on Gen 8.5 glass was successfully launched into the TV market. For the time being, the size of OLED TV became diverse from 55″ to 77″, and the resolution was doubled into ultrahigh definition (UHD). The brightness and color gamut were enhanced, while the lower power consumption was realized. Utmost picture quality and slim form factor of OLED TV as well as the improved performance have made OLED TV recognized as the best premium TV. In this chapter, we describe the recent progress in three key technologies, which enable such an enhancement of performance in OLED TV, i.e., oxide thin-film transistor (TFT) and white organic light-emitting diode (WOLED), compensation circuit, and method to compensate the nonuniformity of oxide TFTs, OLED devices, and luminance

    Improvement of Mechanical Properties of UV-curable Resin for High-aspect Ratio Microstructures Fabricated in Microstereolithography

    Get PDF
    Recently, microstructures fabricated using microstereolithography technology have been used in the biological, medical and mechanical fields. Microstereolithography can fabricate real 3D microstructures with fine features, although there is presently a limited number of materials available for use in the process. Deformation of the fine features on a fabricated microstructure remains a critical issue for successful part fabrication, and part deformation can occur during rinsing or during fabrication as a result of fluid flow forces that occur during movement of mechanical parts of the system. Deformation can result in failure to fabricate a particular feature by breaking the feature completely, spatial deflection of the feature, or attaching the feature to neighboring microstructures. To improve mechanical strength of fabricated microstructures, a clay nanocomposite can be used. In particular, a high-aspect ratio microstructure can be fabricated without distortion using photocurable liquid resin containing a clay nanocomposite. In this paper, a clay nanocomposite was blended with a photocurable liquid resin to solve the deformation problem that occurs during fabrication and rinsing. An optimal mixture ratio of a clay nanocomposite was found through tensile testing and the minimal allowable distance between microstructures was found through fabrication experimentation. Finally, using these results, high-aspect ratio microstructures were fabricated using a clay nanocomposite resin without distortion

    Calcium-binding Protein Calretinin Immunoreactivity in the Dog Superior Colliculus

    Get PDF
    We studied calretinin-immunoreactive (IR) fibers and cells in the canine superior colliculus (SC) and studied the distribution and effect of enucleation on the distribution of this protein. Localization of calretinin was immunocytochemically observed. A dense plexus of anti-­calretinin-IR fibers was found within the upper part of the superficial gray layer (SGL). Almost all of the labeled fibers were small in diameter with few varicosities. The intermediate and deep layers contained many calretinin-IR neurons. Labeled neurons within the intermediate gray layer (IGL) formed clusters in many sections. By contrast, labeled neurons in the deep gray layer (DGL) did not form clusters. Calretinin-IR neurons in the IGL and DGL varied in morphology and included round/oval, vertical fusiform, stellate, and horizontal neurons. Neurons with varicose dendrites were also labeled in the IGL. Most of the labeled neurons were small to medium in size. Monocular enucleation produced an almost complete reduction of calretinin-IR fibers in the SC contralateral to the enucleation. However, many calretinin-IR cells appeared in the contralateral superficial SC. Enucleation appeared to have no effect on the distribution of calretinin-IR neurons in the contralateral intermediate and deep layers of the SC. The calretinin-IR neurons in the superficial dog SC were heterogeneous small- to medium-sized neurons including round/oval, vertical fusiform, stellate, pyriform, and ­horizontal in shape. Two-color immunofluorescence revealed that no cells in the dog SC ­expressed both calretinin and GABA. Many horseradish peroxidase (HRP)-labeled retinal ganglion cells were seen after injections into the superficial layers. The vast majority of the double-labeled cells (HRP and calretinin) were small cells. The present results indicate that antibody to calretinin labels subpopulations of neurons in the dog SC, which do not express GABA. The results also suggest that the calretinin-IR afferents in the superficial layers of the dog SC originate from small class retinal ganglion cells. The expression of calretinin might be changed by the cellular activity of selective superficial collicular neurons. These results are valuable in delineating the basic neurochemical architecture of the dog visual system

    Impacts of an aerosol layer on a mid-latitude continental system of cumulus clouds: how do these impacts depend on the vertical location of the aerosol layer?

    Get PDF
    Using the large-eddy simulation framework, effects of an aerosol layer on warm cumulus clouds in the Korean Peninsula when the layer is above or around the cloud tops in the upper atmosphere are examined. Also, these effects are compared to effects of an aerosol layer when it is around or below the cloud bases in the low atmosphere. Simulations show that when the aerosol layer is in the low atmosphere, aerosols absorb solar radiation and radiatively heat up air enough to induce greater instability, stronger updrafts and more cloud mass than when the layer is in the upper atmosphere. As aerosol concentrations in the layer decrease, the aerosol radiative heating gets weaker to lead to less instability, weaker updrafts and less cloud mass when the layer is in the low atmosphere. This in turn makes differences in cloud mass, which are between a situation when the layer is in the low atmosphere and that when the layer is in the upper atmosphere, smaller. It is found that the transportation of aerosols by updrafts reduces aerosol concentrations in the aerosol layer, which is in the low atmosphere, and in turn reduces the aerosol radiative heating, updraft intensity and cloud mass. It is also found that the presence of aerosol impacts on radiation suppresses updrafts and reduces clouds. Aerosols affect not only radiation but also aerosol activation. In the absence of aerosol impacts on radiation, aerosol impacts on the droplet nucleation increases cloud mass when the layer is in the low atmosphere as compared to a situation when the layer is in the upper atmosphere. As aerosol impacts on radiation team up with those on the droplet nucleation, differences in cloud mass, which are between a situation when the layer in the low atmosphere and that when the layer is in the upper atmosphere, get larger. This is as compared to a situation when there is no aerosol impacts on radiation and only aerosol impacts on the droplet nucleation.</p

    A novel de novo mutation in the serine-threonine kinase STK11 gene in a Korean patient with Peutz-Jeghers syndrome

    Get PDF
    BACKGROUND: Peutz-Jeghers syndrome (PJS) is an unusual autosomal dominant disorder characterized by mucocutaneous pigmentation and multiple gastrointestinal hamartomatous polyps. Patients with PJS are at an increased risk of developing multi-organ cancer, most frequently those involving the gastrointestinal tract. Germline mutation of the STK11 gene, which encodes a serine-threonine kinase, is responsible for PJS. METHODS: Using DNA samples obtained from the patient and his family members, we sequenced nine exons and flanking intron regions of the STK11 gene using polymerase chain reaction (PCR) and direct sequencing. RESULTS: Sequencing of the STK11 gene in the proband of the family revealed a novel 1-base pair deletion of guanine (G) in exon 6 (c.826delG; Gly276AlafsX11). This mutation resulted in a premature termination at codon 286, predicting a partial loss of the kinase domain and complete loss of the C-terminal domain. We did not observe this mutation in both parents of the PJS patient. Therefore, it is considered a novel de novo mutation. CONCLUSION: The results presented herein enlarge the spectrum of mutations of the STK11 gene by identifying a novel de novo mutation in a PJS patient and further support the hypothesis that STK11 mutations are disease-causing mutations for PJS with or without a positive family history

    The Fruit Hull of Gleditsia sinensis

    Get PDF
    Lung cancer has substantial mortality worldwide, and chemotherapy is a routine regimen for the treatment of patients with lung cancer, despite undesirable effects such as drug resistance and chemotoxicity. Here, given a possible antitumor effect of the fruit hull of Gleditsia sinensis (FGS), we tested whether FGS enhances the effectiveness of cis-diammine dichloridoplatinum (II) (CDDP), a chemotherapeutic drug. We found that CDDP, when administered with FGS, significantly decreased the viability and increased the apoptosis and cell cycle arrest of Lewis lung carcinoma (LLC) cells, which were associated with the increase of p21 and decreases of cyclin D1 and CDK4. Concordantly, when combined with FGS, CDDP significantly reduced the volume and weight of tumors derived from LLC subcutaneously injected into C57BL/6 mice, with concomitant increases of phosphor-p53 and p21 in tumor tissue. Together, these results show that FGS could enhance the antitumor activity of CDDP, suggesting that FGS can be used as a complementary measure to enhance the efficacy of a chemotherapeutic agent such as CDDP
    corecore