8,593 research outputs found

    Global gene expression profiling of cells overexpressing SMC3.

    Get PDF
    BACKGROUND: The Structural Maintenance of Chromosome 3 protein (SMC3) plays an essential role during the sister chromatid separation, is involved in DNA repair and recombination and participates in microtubule-mediated intracellular transport. SMC3 is frequently elevated in human colon carcinoma and overexpression of the protein transforms murine NIH3T3 fibroblasts. In order to gain insight into the mechanism of SMC3-mediated tumorigenesis a gene expression profiling was performed on human 293 cells line stably overexpressing SMC3. RESULTS: Biotinylated complementary RNA (cRNA) was used for hybridization of a cDNAmicroarray chip harboring 18,861 65-mer oligos derived from the published dEST sequences. After filtering, the hybridization data were normalized and statistically analyzed. Sixty-five genes for which a putative function could be assigned displayed at least two-fold change in their expression level. Eighteen of the affected genes is either a transcriptional factor or is involved in DNA and chromatin related mechanisms whereas most of those involved in signal transduction are members or modulators of the ras-rho/GTPase and cAMP signaling pathways. In particular the expression of RhoB and CRE-BPa, two mediators of cellular transformation, was significantly enhanced. This association was confirmed by analyzing the RhoB and CRE-BPa transcript levels in cells transiently transfected with an SMC3 expression vector. Consistent with the idea that the activation of ras-rho/GTPase and cAMP pathways is relevant in the context of the cellular changes following SMC3 overexpression, gene transactivation through the related serum (SRE) and cAMP (CRE) cis-acting response elements was significantly increased. CONCLUSION: We have documented a selective effect of the ectopic expression of SMC3 on a set of genes and transcriptional signaling pathways that are relevant for tumorigenesis. The results lead to postulate that RhoB and CRE-BPa two known oncogenic mediators whose expression is significantly increased following SMC3 overexpression play a significant role in mediating SMC3 tumorigenesis

    Optimization of 3D ZnO brush-like nanorods for dye-sensitized solar cells

    Get PDF
    © 2018 The Royal Society of Chemistry This is an Open Access article, distributed under the terms of the Creative Commons Attribution Unported 3.0 license (CC BY 3.0), https://creativecommons.org/licenses/by/3.0/ which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly citedIn a dye-sensitized solar cell (DSSC) the amount of adsorbed dye on the photoanode surface is a key factor that must be maximized in order to obtain enhanced DSSC performance. In this study 3D ZnO nanostructures, named brush-like, are demonstrated as alternative photoanodes. In these structures, long ZnO nanorods are covered with a metal-organic precursor, known as a layered-hydroxide zinc salt (LHZS), which is subsequently converted to crystalline ZnO using two-step annealing. The LHZS is able to easily grow on any surface, such as the ZnO nanorod surface, without needing the assistance of a seed-layer. Brush-like structures synthesized using different citrate concentrations in the growth solutions and different annealing conditions are characterized and tested as DSSC photoanodes. The best-performing structure reported in this study was obtained using the highest citrate concentration (1.808 mM) and the lowest temperature annealing condition in an oxidative environment. Conversion efficiency as high as 1.95% was obtained when these brush-like structures were employed as DSSC photoanodes. These results are extremely promising for the implementation of these innovative structures in enhanced DSSCs, as well as in other applications that require the maximization of surface area exposed by ZnO or similar semiconductors, such as gas- or bio-sensing or photocatalysis.Peer reviewedFinal Published versio

    Zigzag graphene nanoribbons without inversion symmetry

    Full text link
    Graphene on a substrate will suffer an inversion-symmetry-breaking (ISB) lattice potential. Taking electron-electron interaction into account, we study in this paper the possibility of half-metallicity and noncollinear (NC) magnetic phase for graphene zigzag nanoribbons without inversion symmetry. At half-filling it is found that half-metallic(HM) state can be achieved at an intermediate value of the ISB potential due to its competition with the electron-electron interaction. Away from half-filling, the phase diagrams of doping versus ISB potential for different ribbon width are given, where the regimes for the HM states and NC magnetic state are clearly indicated and discussed. For ribbons with perfect edges, we predict a topological transition between two HM states with different magnetic structures, which is accompanied by an abrupt transition of electrical conductance along the ribbon from 2e2/h2e^2/h to e2/he^2/h.Comment: 7 pages, 7 figure

    Effects of Magnetic Nanoparticles and External Magnetostatic Field on the Bulk Heterojunction Polymer Solar Cells

    Get PDF
    The price of energy to separate tightly bound electron-hole pair (or charge-transfer state) and extract freely movable charges from low-mobility materials represents fundamental losses for many low-cost photovoltaic devices. In bulk heterojunction (BHJ) polymer solar cells (PSCs), approximately 50% of the total efficiency lost among all energy loss pathways is due to the photogenerated charge carrier recombination within PSCs and low charge carrier mobility of disordered organic materials. To address these issues, we introduce magnetic nanoparticles (MNPs) and orientate these MNPS within BHJ composite by an external magnetostatic field. Over 50% enhanced efficiency was observed from BHJ PSCs incorporated with MNPs and an external magnetostatic field alignment when compared to the control BHJ PSCs. The optimization of BHJ thin film morphology, suppression of charge carrier recombination, and enhancement in charge carrier collection result in a greatly increased short-circuit current density and fill factor, as a result, enhanced power conversion efficiency. http://dx.doi.org/10.1038/srep0926

    High-efficient screening method for identification of key genes in breast cancer through microarray and bioinformatics

    Get PDF
    Background/Aim: The aim of the present study was to identify key pathways and genes in breast cancer and develop a new method for screening key genes with abnormal expression based on bioinformatics. Materials and Methods: Three microarray datasets GSE21422, GSE42568 and GSE45827 were downloaded from the Gene Expression Omnibus (GEO) database and differentially expressed genes (DEGs) were analyzed using GEO2R. The gene ontology (GO) and pathway enrichment analysis were established through DAVID database. The protein–protein interaction (PPI) network was performed through the Search Tool for the Retrieval of Interacting Genes (STRING) database and managed by Cytoscape. The overall survival (OS) analysis of the 4 genes including AURKA, CDH1, CDK1 and PPARG that had higher degrees in this network was uncovered Kaplan-Meier analysis. Results: A total of 811 DEGs were identified in breast cancer, which were enriched in biological processes, including cell cycle, mitosis, vessel development and lipid metabolic. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the up-regulated DEGs were particularly involved in cell cycle, progesterone-mediated oocyte maturation and leukocyte transendothelial migration, while the down-regulated DEGs were mainly involved in regulation of lipolysis, fatty acid degradation and glycerolipid metabolism. Through PPI network analysis, 14 hub genes were identified. Among them, the high expression of AURKA, CDH1 and CDK1 were associated with worse OS of breast cancer patients; while the high expression of PPARG was linked with better OS. Conclusion: The present study identified key pathways and genes involved in breast cancer which are potential molecular targets for breast cancer treatment and diagnosis

    Hepatitis B virus reactivation in breast cancer patients undergoing chemotherapy: A review and meta-analysis of prophylaxis management

    Get PDF
    Hepatitis B virus (HBV) reactivation during or after chemotherapy in patients with breast cancer has become a remarkable clinical problem. Prophylactic nucleos(t)ide analogues (NAs) are recommended for patients with breast cancer who are hepatitis B surface antigen (HBsAg) positive before chemotherapy. We performed an up-to-date meta-analysis to compare the efficacy of prophylactic lamivudine use with nonprophylaxis in HBsAg-positive breast cancer patients undergoing chemotherapy. PubMed, the Cochrane Library and China National Knowledge Infrastructure (CNKI) databases were searched for relevant articles until June 2016. Eligible articles comparing the efficacy of prophylactic lamivudine use with nonprophylaxis in HBsAg-positive breast cancer patients undergoing chemotherapy were identified. Eight studies which had enrolled 709 HBsAg-positive breast cancer patients undergoing chemotherapy were analysed. Lamivudine prophylaxis significantly reduced the rates of chemotherapy-associated hepatitis B flares in chronic hepatitis B in breast cancer compared with patients with nonprophylaxis (odds ratio [OR]=0.15, 95% confidence interval [CI]: 0.07-0.35, P<.00001). Chemotherapy disruption rates attributed to HBV reactivation in the prophylaxis groups were significantly lower than the nonprophylaxis groups (OR=0.17, 95% CI: 0.07-0.43, P=.0002). Patients with lamivudine prophylaxis had a higher risk for tyrosine-methionine-aspartate-aspartate (YMDD) motif mutations than patients with nonprophylaxis (OR=6.33, 95% CI: 1.01-39.60, P=.05). Prophylactic antiviral therapy management is necessary for HBsAg-positive breast cancer patients undergoing chemotherapy, in spite of high correlation with lamivudine-resistant HBV variants with YMDD motif mutations

    J/\psi Production Via Photon Fragmentation at Hadron Colliders

    Get PDF
    The transverse momentum (ptp_t) distributions of production and polarization for J/ψJ/\psi measured by CDF Collaboration are still challenging our understanding of the heavy quarkonium production mechanism even with recent significant theoretical progresses on the next-to-leading-order (NLO) QCD calculation. We suggest a new mechanism for J/ψJ/\psi production at hadron collider, pp(pˉ)→γ∗(J/ψ)+Xpp(\bar p)\to \gamma^{\ast}(J/\psi)+X with J/ψJ/\psi from a virtual photon γ∗\gamma^{\ast} fragmentation. Our calculations show it's ptp_t distribution at NLO will be larger than that of the conventional J/ψJ/\psi production from the color-singlet mechanism at NLO when pt>26p_{t}>26 (35) GeV at the Tevatron (LHC) and reach about 6 (10) times of the conventional one when pt=50p_t=50 (100) GeV at the Tevatron (LHC), in spite of a suppression factor (α/αs)2(\alpha/\alpha_s)^2 that is associated with the QED and QCD coupling constants. In addition, it also has large impact on the ptp_{t} distribution of J/ψJ/\psi polarization in large ptp_{t} region. Therefore, it is a important mechanism for J/ψJ/\psi production at large ptp_t region especially for the LHC.Comment: 4 pages, 3 figures
    • …
    corecore