956 research outputs found

    Pair production of neutralinos via gluon-gluon collisions

    Get PDF
    The production of a neutralino pair via gluon-gluon fusion is studied in the minimal supersymmetric model(MSSM) at proton-proton colliders. The numerical analysis of their production rates are carried out in the mSUGRA scenario. The results show that this cross section may reach about 80 femto barn for χ~10χ~20\tilde{\chi}^{0}_{1}\tilde{\chi}^{0}_{2} pair production and 23 femto barn for χ~20χ~20\tilde{\chi}^{0}_{2}\tilde{\chi}^{0}_{2} pair production with suitable input parameters at the future LHC collider. It shows that this loop mediated process can be competitive with the quark-antiquark annihilation process at the LHC.Comment: LaTex file, l4 pages, 5 EPS figure

    CoGeNT Interpretations

    Full text link
    Recently, the CoGeNT experiment has reported events in excess of expected background. We analyze dark matter scenarios which can potentially explain this signal. Under the standard case of spin independent scattering with equal couplings to protons and neutrons, we find significant tensions with existing constraints. Consistency with these limits is possible if a large fraction of the putative signal events is coming from an additional source of experimental background. In this case, dark matter recoils cannot be said to explain the excess, but are consistent with it. We also investigate modifications to dark matter scattering that can evade the null experiments. In particular, we explore generalized spin independent couplings to protons and neutrons, spin dependent couplings, momentum dependent scattering, and inelastic interactions. We find that some of these generalizations can explain most of the CoGeNT events without violation of other constraints. Generalized couplings with some momentum dependence, allows further consistency with the DAMA modulation signal, realizing a scenario where both CoGeNT and DAMA signals are coming from dark matter. A model with dark matter interacting and annihilating into a new light boson can realize most of the scenarios considered.Comment: 24 pages, 12 figs, v2: published version, some discussions clarifie

    Higgs Signal for h to aa at Hadron Colliders

    Full text link
    We assess the prospect of observing a neutral Higgs boson at hadron colliders in its decay to two spin-zero states, a, for a Higgs mass of 90-130 GeV, when produced in association with a W or Z boson. Such a decay is allowed in extensions of the MSSM with CP-violating interactions and in the NMSSM, and can dominate Higgs boson final states, thereby evading the LEP constraints on standard Higgs boson production. The light spin-zero state decays primarily via a to bb and tau+tau-, so this signal channel retains features distinct from the main backgrounds. Our study shows that at the Tevatron, there may be potential to observe a few events in the bb tau+tau- or bbbb channels with relatively small background, although this observation would be statistically limited. At the LHC, the background problem is more severe, but with cross sections and integrated luminosities orders of magnitude larger than at the Tevatron, the observation of a Higgs boson in this decay mode would be possible. The channel h to aa to bbbb would provide a large statistical significance, with a signal-to-background ratio on the order of 1:2. In these searches, the main challenge would be to retain the adequate tagging efficiency of b's and tau's in the low p_T region.Comment: Version to be published in JHEP. 20 pages, 5 figure

    Numerical Jordan-Wigner approach for two dimensional spin systems

    Full text link
    We present a numerical self consistent variational approach based on the Jordan-Wigner transformation for two dimensional spin systems. We apply it to the study of the well known quantum (S=1/2) antiferromagnetic XXZ system as a function of the easy-axis anisotropy \Delta on a periodic square lattice. For the SU(2) case the method converges to a N\'eel ordered ground state irrespectively of the input density profile used and in accordance with other studies. This shows the potential utility of the proposed method to investigate more complicated situations like frustrated or disordered systems.Comment: Revtex, 8 pages, 4 figure

    Dimer coverings on the Sierpinski gasket with possible vacancies on the outmost vertices

    Full text link
    We present the number of dimers Nd(n)N_d(n) on the Sierpinski gasket SGd(n)SG_d(n) at stage nn with dimension dd equal to two, three, four or five, where one of the outmost vertices is not covered when the number of vertices v(n)v(n) is an odd number. The entropy of absorption of diatomic molecules per site, defined as SSGd=lim⁡n→∞ln⁡Nd(n)/v(n)S_{SG_d}=\lim_{n \to \infty} \ln N_d(n)/v(n), is calculated to be ln⁡(2)/3\ln(2)/3 exactly for SG2(n)SG_2(n). The numbers of dimers on the generalized Sierpinski gasket SGd,b(n)SG_{d,b}(n) with d=2d=2 and b=3,4,5b=3,4,5 are also obtained exactly. Their entropies are equal to ln⁡(6)/7\ln(6)/7, ln⁡(28)/12\ln(28)/12, ln⁡(200)/18\ln(200)/18, respectively. The upper and lower bounds for the entropy are derived in terms of the results at a certain stage for SGd(n)SG_d(n) with d=3,4,5d=3,4,5. As the difference between these bounds converges quickly to zero as the calculated stage increases, the numerical value of SSGdS_{SG_d} with d=3,4,5d=3,4,5 can be evaluated with more than a hundred significant figures accurate.Comment: 35 pages, 20 figures and 1 tabl

    Pair Production of the Lightest Chargino via Gluon-Gluon Collisions

    Get PDF
    The production of the lightest chargino pair from gluon-gluon fusion is studied in the minimal supersymmetric model(MSSM) at proton-proton colliders. We find that with the chosen parameters, the production rate of the subprocess can be over 2.7 femto barn when the chargino is higgsino-like, and the corresponding total cross section in proton-proton collider can reach 56 femto barn at the LHC in the CP-conserving MSSM. It shows that this loop mediated subprocess can be competitive with the standard Drell-Yan subprocess in proton-proton colliders, especially at the LHC. Furthermore, our calculation shows it would be possible to extract information about some CP-violating phase parameters, if we collected enough chargino pair events.Comment: 39 pages, LaTex, 8 figure

    Sublocalization, superlocalization, and violation of standard single parameter scaling in the Anderson model

    Full text link
    We discuss the localization behavior of localized electronic wave functions in the one- and two-dimensional tight-binding Anderson model with diagonal disorder. We find that the distributions of the local wave function amplitudes at fixed distances from the localization center are well approximated by log-normal fits which become exact at large distances. These fits are consistent with the standard single parameter scaling theory for the Anderson model in 1d, but they suggest that a second parameter is required to describe the scaling behavior of the amplitude fluctuations in 2d. From the log-normal distributions we calculate analytically the decay of the mean wave functions. For short distances from the localization center we find stretched exponential localization ("sublocalization") in both, 1d and 2d. In 1d, for large distances, the mean wave functions depend on the number of configurations N used in the averaging procedure and decay faster that exponentially ("superlocalization") converging to simple exponential behavior only in the asymptotic limit. In 2d, in contrast, the localization length increases logarithmically with the distance from the localization center and sublocalization occurs also in the second regime. The N-dependence of the mean wave functions is weak. The analytical result agrees remarkably well with the numerical calculations.Comment: 12 pages with 9 figures and 1 tabl

    Potts model on recursive lattices: some new exact results

    Full text link
    We compute the partition function of the Potts model with arbitrary values of qq and temperature on some strip lattices. We consider strips of width Ly=2L_y=2, for three different lattices: square, diced and `shortest-path' (to be defined in the text). We also get the exact solution for strips of the Kagome lattice for widths Ly=2,3,4,5L_y=2,3,4,5. As further examples we consider two lattices with different type of regular symmetry: a strip with alternating layers of width Ly=3L_y=3 and Ly=m+2L_y=m+2, and a strip with variable width. Finally we make some remarks on the Fisher zeros for the Kagome lattice and their large q-limit.Comment: 17 pages, 19 figures. v2 typos corrected, title changed and references, acknowledgements and two further original examples added. v3 one further example added. v4 final versio

    Statistics of Coulomb blockade peak spacings for a partially open dot

    Full text link
    We show that randomness of the electron wave functions in a quantum dot contributes to the fluctuations of the positions of the conductance peaks. This contribution grows with the conductance of the junctions connecting the dot to the leads. It becomes comparable with the fluctuations coming from the randomness of the single particle spectrum in the dot while the Coulomb blockade peaks are still well-defined. In addition, the fluctuations of the peak spacings are correlated with the fluctuations of the conductance peak heights.Comment: 13 pages, 1 figur
    • 

    corecore