40,662 research outputs found

    Turbulence Time Series Data Hole Filling using Karhunen-Loeve and ARIMA methods

    Get PDF
    Measurements of optical turbulence time series data using unattended instruments over long time intervals inevitably lead to data drop-outs or degraded signals. We present a comparison of methods using both Principal Component Analysis, which is also known as the Karhunen--Loeve decomposition, and ARIMA that seek to correct for these event-induced and mechanically-induced signal drop-outs and degradations. We report on the quality of the correction by examining the Intrinsic Mode Functions generated by Empirical Mode Decomposition. The data studied are optical turbulence parameter time series from a commercial long path length optical anemometer/scintillometer, measured over several hundred metres in outdoor environments.Comment: 8 pages, 9 figures, submitted to ICOLAD 2007, City University, London, U

    Humidity contribution to C_n^2 over a 600m pathlength in a tropical marine environment

    Get PDF
    We present new optical turbulence structure parameter measurements, C_n^2, over sea water between La Parguera and Magueyes Island (17.6N 67W) on the southwest coast of Puerto Rico. The 600 meter horizontal paths were located approximately 1.5 m and 10 m above sea level. No data of this type has ever been made available in the literature. Based on the data, we show that the C_n^2 measurements are about 7 times less compared to equivalent land data. This strong evidence reinforces our previous argument that humidity must be accounted for to better ascertain the near surface atmospheric turbulence effects, which current visible / near infrared C_n^2 bulk models fail to do. We also explore the generalised fractal dimension of this littoral data and compare it to our reference land data. We find cases that exhibit monofractal characteristics, that is to say, the effect of rising temperatures during the daylight hours upon turbulence are counterbalanced by humidity, leading to a single characteristic scale for the measurements. In other words, significant moisture changes in the measurement volume cancels optical turbulence increases due to temperature rises. Figures available as JPG only.Comment: 7 pages, 4 figures, 1 table, SPIE Photonics West 2007, paper 6457B-2

    Spectroscopic analyses of Fe and water in clays: A Martian surface weathering study

    Get PDF
    Martian surface morphology suggests the presence of liquid H2O on Mars in the past. Reflectance spectra of the Martian surface include features which correspond to the crystal field transitions of iron, as well as features supporting the presence of ice and minerals containing structural OH and surface water. Researchers initiated further spectroscopic studies of surface iron and water and structural OH in clays in order to determine what remotely obtained spectra can indicate about the presence of clays on Mars based on a clearer understanding of the factors influencing the spectral features. Current technology allows researchers to better correlate the low frequency fundamental stretching and bending vibrations of O-H bonds with the diagnostic near infrared overtone and combination bands used in mineral characterization and identification

    Applying the Hilbert--Huang Decomposition to Horizontal Light Propagation C_n^2 data

    Get PDF
    The Hilbert Huang Transform is a new technique for the analysis of non--stationary signals. It comprises two distinct parts: Empirical Mode Decomposition (EMD) and the Hilbert Transform of each of the modes found from the first step to produce a Hilbert Spectrum. The EMD is an adaptive decomposition of the data, which results in the extraction of Intrinsic Mode Functions (IMFs). We discuss the application of the EMD to the calibration of two optical scintillometers that have been used to measure C_n^2 over horizontal paths on a building rooftop, and discuss the advantage of using the Marginal Hilbert Spectrum over the traditional Fourier Power Spectrum.Comment: 9 pages, 11 figures, proc. SPIE 626

    Divergence and Shannon information in genomes

    Full text link
    Shannon information (SI) and its special case, divergence, are defined for a DNA sequence in terms of probabilities of chemical words in the sequence and are computed for a set of complete genomes highly diverse in length and composition. We find the following: SI (but not divergence) is inversely proportional to sequence length for a random sequence but is length-independent for genomes; the genomic SI is always greater and, for shorter words and longer sequences, hundreds to thousands times greater than the SI in a random sequence whose length and composition match those of the genome; genomic SIs appear to have word-length dependent universal values. The universality is inferred to be an evolution footprint of a universal mode for genome growth.Comment: 4 pages, 3 tables, 2 figure

    Quantum error correction of coherent errors by randomization

    Full text link
    A general error correction method is presented which is capable of correcting coherent errors originating from static residual inter-qubit couplings in a quantum computer. It is based on a randomization of static imperfections in a many-qubit system by the repeated application of Pauli operators which change the computational basis. This Pauli-Random-Error-Correction (PAREC)-method eliminates coherent errors produced by static imperfections and increases significantly the maximum time over which realistic quantum computations can be performed reliably. Furthermore, it does not require redundancy so that all physical qubits involved can be used for logical purposes.Comment: revtex 4 pages, 3 fig

    Self-optimization of optical confinement in ultraviolet photonic crystal slab laser

    Get PDF
    We studied numerically and experimentally the effects of structural disorder on the performance of ultraviolet photonic crystal slab lasers. Optical gain selectively amplifies the high-quality modes of the passive system. For these modes, the in-plane and out-of-plane leakage rates may be automatically balanced in the presence of disorder. The spontaneous optimization of in-plane and out-of-plane confinement of light in a photonic crystal slab may lead to a reduction of the lasing threshold.Comment: 5 pages, 5 figure

    Universal Torsion-Induced Interaction from Large Extra Dimensions

    Get PDF
    We consider the Kaluza-Klein (KK) scenario in which only gravity exists in the bulk. Without the assumption of symmetric connection, the presence of brane fermions induces torsion. The result is a universal axial contact interaction that dominates those induced by KK gravitons. This enhancement arises from a large spin density on the brane. Using a global fit to Z-pole observables, we find the 3 sigma bound on the scale of quantum gravity to be 28 TeV for n=2. If Dirac or light sterile neutrinos are present, the data from SN1987A increase the bound to \sqrt{n}M_S >= 210 TeV.Comment: 9 pages REVTeX, 1 postscript figure, uses axodraw.st
    • …
    corecore