40,656 research outputs found

    Crystal growth and quantum oscillations in the topological chiral semimetal CoSi

    Get PDF
    We survey the electrical transport properties of the single-crystalline, topological chiral semimetal CoSi which was grown via different methods. High-quality CoSi single crystals were found in the growth from tellurium solution. The sample's high carrier mobility enables us to observe, for the first time, quantum oscillations (QOs) in its thermoelectrical signals. Our analysis of QOs reveals two spherical Fermi surfaces around the R point in the Brillouin zone corner. The extracted Berry phases of these electron orbits are consistent with the -2 chiral charge as reported in DFT calculations. Detailed analysis on the QOs reveals that the spin-orbit coupling induced band-splitting is less than 2 meV near the Fermi level, one order of magnitude smaller than our DFT calculation result. We also report the phonon-drag induced large Nernst effect in CoSi at intermediate temperatures

    Two-component model for the chemical evolution of the Galactic disk

    Get PDF
    In the present paper, we introduce a two-component model of the Galactic disk to investigate its chemical evolution. The formation of the thick and thin disks occur in two main accretion episodes with both infall rates to be Gaussian. Both the pre-thin and post-thin scenarios for the formation of the Galactic disk are considered. The best-fitting is obtained through χ2\chi^2-test between the models and the new observed metallicity distribution function of G dwarfs in the solar neighbourhood (Hou et al 1998). Our results show that post-thin disk scenario for the formation of the Galactic disk should be preferred. Still, other comparison between model predictions and observations are given.Comment: 23 pages, 7 figure

    Fractional Quantum Hall Effect in Topological Flat Bands with Chern Number Two

    Full text link
    Recent theoretical works have demonstrated various robust Abelian and non-Abelian fractional topological phases in lattice models with topological flat bands carrying Chern number C=1. Here we study hard-core bosons and interacting fermions in a three-band triangular-lattice model with the lowest topological flat band of Chern number C=2. We find convincing numerical evidence of bosonic fractional quantum Hall effect at the ν=1/3\nu=1/3 filling characterized by three-fold quasi-degeneracy of ground states on a torus, a fractional Chern number for each ground state, a robust spectrum gap, and a gap in quasihole excitation spectrum. We also observe numerical evidence of a robust fermionic fractional quantum Hall effect for spinless fermions at the ν=1/5\nu=1/5 filling with short-range interactions.Comment: 5 pages, 7 figures, with Supplementary Materia

    Electron Delocalization in Gate-Tunable Gapless Silicene

    Full text link
    The application of a perpendicular electric field can drive silicene into a gapless state, characterized by two nearly fully spin-polarized Dirac cones owing to both relatively large spin-orbital interactions and inversion symmetry breaking. Here we argue that since inter-valley scattering from non-magnetic impurities is highly suppressed by time reversal symmetry, the physics should be effectively single-Dirac-cone like. Through numerical calculations, we demonstrate that there is no significant backscattering from a single impurity that is non-magnetic and unit-cell uniform, indicating a stable delocalized state. This conjecture is then further confirmed from a scaling of conductance for disordered systems using the same type of impurities.Comment: 6 pages, 3 figures, published versio

    Binding Transition in Quantum Hall Edge States

    Get PDF
    We study a class of Abelian quantum Hall (QH) states which are topologically unstable (T-unstable). We find that the T-unstable QH states can have a phase transition on the edge which causes a binding between electrons and reduces the number of gapless edge branches. After the binding transition, the single-electron tunneling into the edge gains a finite energy gap, and only certain multi-electron co-tunneling (such as three-electron co-tunneling for ν=9/5\nu=9/5 edges) can be gapless. Similar phenomenon also appear for edge state on the boundary between certain QH states. For example edge on the boundary between ν=2\nu=2 and ν=1/5\nu=1/5 states only allow three-electron co-tunneling at low energies after the binding transition.Comment: 4 pages, RevTeX, 1 figur
    • …
    corecore