1,009 research outputs found

    Spikes in the SED and Ripples in the Outskirts of Galaxies

    Full text link
    We describe a new method that allows us to quantitatively characterize galactic satellites from analysis of disturbances in outer gas disks, without requiring knowledge of their optical light. We have demonstrated the validity of this method, which we call Tidal Analysis, by applying it to local spirals with known optical companions, including M51 and NGC 1512. These galaxies span the range from having a low mass companion (~ one-hundredth the mass of the primary galaxy) to a fairly massive companion (~ one-third the mass of the primary galaxy). This approach has broad implications for many areas of astrophysics - for the indirect detection of dark matter (or dark-matter dominated dwarf galaxies), and for galaxy evolution in its use as a decipher of the dynamical impact of satellites on galactic disks. Here, we present some preliminary results on the emergent SEDs and images, calculated along the time sequence of these dynamical simulations using the 3-D self-consistent Monte Carlo radiative transfer code RADISHE. We explore star formation prescriptions and how they affect the emergent SEDs and images. Our goal is to identify SED colors that are primarily affected by the galaxy's interaction history, and not significantly affected by the choice of star formation prescription. If successful, we may be able to utilize the emergent UV-IR SED of the primary galaxy to understand its recent interaction history.Comment: 7 pages, 4 figures, proceedings of invited talk at IAU Symposium No. 284, The Spectral Energy Distribution of Galaxie

    Tidal Imprints of a Dark Sub-Halo on the Outskirts of the Milky Way II. Perturber Azimuth

    Full text link
    We extend our analysis of the observed disturbances on the outskirts of the HI disk of the Milky Way. We employ the additional constraints of the phase of the modes of the observed HI image and asymmetry in the radial velocity field to derive the azimuth of the perturber inferred to be responsible for the disturbances in the HI disk. We carry out a modal analysis of the phase of the disturbances in the HI image and in SPH simulations of a Milky Way-like galaxy tidally interacting with dark perturbers, the relative offset of which we utilize to derive the perturber azimuth. To make a direct connection with observations, we express our results in sun-centered coordinates, predicting that the perturber responsible for the observed disturbances is between -50 \la l \la -10. We show explicitly that the phase of the disturbances in the outskirts of simulated galaxies at the time that best fits the Fourier amplitudes, our primary metric for the azimuth determination, is relatively insensitive to the equation of state. Our calculations here represent our continuing efforts to develop the "Tidal Analysis" method of Chakrabarti \& Blitz (2009; CB09). CB09 employed SPH simulations to examine tidal interactions between perturbing dark sub-halos and the Milky Way. They found that the amplitudes of the Fourier modes of the observed planar disturbances are best-fit by a perturbing dark sub-halo with mass one-hundredth that of the Milky Way, and a pericentric approach distance of 510 kpc\sim 5-10~\rm kpc. The overarching goal of this work is to attempt to outline an alternate procedure to optical studies for characterizing and potentially discovering dwarf galaxies -- whereby one can approximately infer the azimuthal location of a perturber, its mass and pericentric distance (CB09) from analysis of its tidal gravitational imprints on the HI disk of the primary galaxy.Comment: submitted to ApJ; 12 pages; higher resolution figures can be found at: http://astro.berkeley.edu/~sukanya/perturbersubmit.pd

    Complete breakdown of the Debye model of rotational relaxation near the isotropic-nematic phase boundary: Effects of intermolecular correlations in orientational dynamics

    Get PDF
    The Debye-Stokes-Einstein (DSE) model of rotational diffusion predicts that the rotational correlation times τl\tau_{l} vary as [l(l+1)]1[l(l+1)]^{-1}, where ll is the rank of the orientational correlation function (given in terms of the Legendre polynomial of rank ll). One often finds significant deviation from this prediction, in either direction. In supercooled molecular liquids where the ratio τ1/τ2\tau_{1}/\tau_{2} falls considerably below three (the Debye limit), one usually invokes a jump diffusion model to explain the approach of the ratio τ1/τ2\tau_{1}/\tau_{2} to unity. Here we show in a computer simulation study of a standard model system for thermotropic liquid crystals that this ratio becomes much less than unity as the isotropic-nematic phase boundary is approached from the isotropic side. Simultaneously, the ratio τ2/η\tau_2/\eta (where η\eta is the shear viscosity of the liquid) becomes {\it much larger} than hydrodynamic value near the I-N transition. We have also analyzed the break down of the Debye model of rotational diffusion in ratios of higher order rotational correlation times. We show that the break down of the DSE model is due to the growth of orientational pair correlation and provide a mode coupling theory analysis to explain the results.Comment: Submitted to Physical Review

    Accretion Flow Properties of EXO 1846-031 During its Multi-Peaked Outburst After Long Quiescence

    Full text link
    We study the recent outburst of the black hole candidate EXO 1846-031 which went into an outburst in 2019 after almost 34 years in quiescence. We use archival data from Swift/XRT, MAXI/GSC, NICER/XTI and NuSTAR/FPM satellites/instruments to study the evolution of the spectral and temporal properties of the source during the outburst. Low energy X-ray flux of the outburst shows multiple peaks making it a multipeak outburst. Evolving type-C quasi-periodic oscillations (QPOs) are observed in the NICER data in the hard, hard intermediate and soft intermediate states. We use the physical Two Component Advective Flow (TCAF) model to analyze the combined spectra of multiple satellite instruments. According to the TCAF model, the accreting matter is divided into Keplerian and sub-Keplerian parts, and the variation in the observed spectra in different spectral states arises out of the variable contributions of these two types of accreting matter in the total accretion rate. Studying the evolution of the accretion rates and other properties of the accretion flow obtained from the spectral analysis, we show how the multiple peaks in the outburst flux arises out of discontinuous supply and different radial velocities of two types of accreting matter from the pile-up radius. We detect an Fe emission line at 6.6\sim6.6 keV in the hard and the intermediate states in the NICER spectra. We determine the probable mass of the black hole to be 12.430.03+0.14 M12.43^{+0.14}_{-0.03}~M_\odot from the spectral analysis with the TCAF model. We also estimate viscous time scale of the source in this outburst to be 8\sim 8 days from the peak difference of the Keplerian and sub-Keplerian mass accretion rates.Comment: 15 pages, 8 Figures, 2 Tables (In Communication ApJ
    corecore