2,892 research outputs found

    Instantaneous ionization rate as a functional derivative

    Get PDF
    We describe an approach defining instantaneous ionization rate (IIR) as a functional derivative of the total ionization probability. The definition is based on physical quantities which are directly measurable, such as the total ionization probability and the waveform of the pulse. The definition is, therefore, unambiguous and does not suffer from gauge non-invariance. We compute IIR by solving numerically the time-dependent Schrodinger equation for the hydrogen atom in a strong laser field. We find that the IIR lags behind the electric field, but this lag is entirely due to the long tail effect of the Coulomb field. In agreement with the previous results using attoclock methodology, therefore, the IIR we define does not show measurable delay in strong field tunnel ionization

    Cullin 3ā€“Mediated Regulation of Intracellular Iron Homeostasis Promotes Thymic Invariant NKT Cell Maturation

    Get PDF
    The E3 ubiquitin ligase cullin 3 (Cul3) is critical for invariant NKT (iNKT) cell development, as iNKT cells lacking Cul3 accumulate in the immature developmental stages. However, the mechanisms by which Cul3 mediates iNKT cell development remain unknown. In this study, we investigated the role of Cul3 in both immature and mature thymic iNKT cells using a mouse model with a T cellā€“specific deletion of Cul3. We found that mature iNKT cells lacking Cul3 proliferated and died more than wild-type cells did. These cells also displayed increased glucose metabolism and autophagy. Interestingly, we found that tight regulation of iron homeostasis is critical for iNKT cell development. Without Cul3, mature iNKT cells harbored higher levels of cytosolic iron, a phenotype associated with increased cell death. Taken together, our data suggest that Cul3 promotes iNKT cell development partially through intracellular iron homeostasis. ImmunoHorizons, 2023, 7: 235ā€“242

    Effect of fetal hemoglobin on microvascular regulation in sickle transgenic-knockout mice

    Get PDF

    Development of foam-based layered targets for laser-driven ion beam production

    Get PDF
    We report on the development of foam-based double-layer targets (DLTs) for laser-driven ion acceleration. Foam layers with a density of a few mg cm-3 and controlled thickness in the 8-36 Ī¼m range were grown on Ī¼m-thick Al foils by pulsed laser deposition (PLD). The DLTs were experimentally investigated by varying the pulse intensity, laser polarisation and target properties. Comparing DLTs with simple Al foils, we observed a systematic enhancement of the maximum and average energies and number of accelerated ions. Maximum energies up to 30 MeV for protons and 130 MeV for C6+ ions were detected. Dedicated three-dimensional particle-in-cell (3D-PIC) simulations were performed considering both uniform and cluster-assembled foams to interpret the effect of the foam nanostructure on the acceleration process

    Engaging the Dynamics of Pastoral Imagination for Field Education

    Get PDF
    The importance and the process of engaging pastoral imagination in field education
    • ā€¦
    corecore