270 research outputs found

    Revealing cancer subtypes with higher-order correlations applied to imaging and omics data

    Get PDF
    Figure S9. Screenshot of the interactive Tumor Map visualization, showing HOCUS applied to the TCGA Pancan-12 mutation data. Each point is one tumor sample, which we have color-coded by tissue type. A dotted box highlights the cluster of samples that have both PIK3CA and TP53 mutations, which are usually mutually exclusive. (EPS 751 kb

    Flipping the hidden curriculum to transform pain education and culture

    Get PDF
    Though long-sought, transformation of pain management practice and culture has yet to be realized. We propose both a likely cause—entrenchment in a biomedical model of care that is observed and then replicated by trainees—and a solution: deliberately leveraging the hidden curriculum to instead implement a sociopsychobiological (SPB) model of care. We make use of Implicit Bias Recognition and Management, a tool that helps teams to first recognize and “surface” whatever is implicit and to subsequently intervene to change whatever is found to be lacking. We describe how a practice might use iterations of recognition and intervention to move from a biomedical to a SPB model by providing examples from the Chronic Pain Wellness Center in the Phoenix Veterans Affairs Health Care System. As pain management practitioners and educators collectively leverage the hidden curriculum to provide care in the SPB model, we will not only positively transform our individual practices but also pain management as a whole

    Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses

    Get PDF
    The RNA-binding protein (RBP) TAF15 is implicated in amyotrophic lateral sclerosis (ALS). To compare TAF15 function to that of two ALS-associated RBPs, FUS and TDP-43, we integrate CLIP-seq and RNA Bind-N-Seq technologies, and show that TAF15 binds to ∼4,900 RNAs enriched for GGUA motifs in adult mouse brains. TAF15 and FUS exhibit similar binding patterns in introns, are enriched in 3′ untranslated regions and alter genes distinct from TDP-43. However, unlike FUS and TDP-43, TAF15 has a minimal role in alternative splicing. In human neural progenitors, TAF15 and FUS affect turnover of their RNA targets. In human stem cell-derived motor neurons, the RNA profile associated with concomitant loss of both TAF15 and FUS resembles that observed in the presence of the ALS-associated mutation FUS R521G, but contrasts with late-stage sporadic ALS patients. Taken together, our findings reveal convergent and divergent roles for FUS, TAF15 and TDP-43 in RNA metabolism.National Institutes of Health (U.S.) (Grant HG007005

    A social-ecological-technological systems framework for urban ecosystem services

    Get PDF
    As rates of urbanization and climatic change soar, decision-makers are increasingly challenged to provide innovative solutions that simultaneously address climate-change impacts and risks and inclusively ensure quality of life for urban residents. Cities have turned to nature-based solutions to help address these challenges. Nature-based solutions, through the provision of ecosystem services, can yield numerous benefits for people and address multiple challenges simultaneously. Yet, efforts to mainstream nature-based solutions are impaired by the complexity of the interacting social, ecological, and technological dimensions of urban systems. This complexity must be understood and managed to ensure ecosystem-service provisioning is effective, equitable, and resilient. Here, we provide a social-ecological-technological system (SETS) framework that builds on decades of urban ecosystem services research to better understand four core challenges associated with urban nature-based solutions: multi-functionality, systemic valuation, scale mismatch of ecosystem services, and inequity and injustice. The framework illustrates the importance of coordinating natural, technological, and socio-economic systems when designing, planning, and managing urban nature-based solutions to enable optimal social-ecological outcomes

    Randomized elimination and prolongation of ACE inhibitors and ARBs in coronavirus 2019 (REPLACE COVID) Trial Protocol

    Full text link
    Severe acute respiratory syndrome coronavirus 2 (SARS- CoV- 2), the virus responsible for coronavirus disease 2019 (COVID- 19), is associated with high incidence of multiorgan dysfunction and death. Angiotensin- converting enzyme 2 (ACE2), which facilitates SARS- CoV- 2 host cell entry, may be impacted by angiotensin- converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), two commonly used antihypertensive classes. In a multicenter, international randomized controlled trial that began enrollment on March 31, 2020, participants are randomized to continuation vs withdrawal of their long- term outpatient ACEI or ARB upon hospitalization with COVID- 19. The primary outcome is a hierarchical global rank score incorporating time to death, duration of mechanical ventilation, duration of renal replacement or vasopressor therapy, and multiorgan dysfunction severity. Approval for the study has been obtained from the Institutional Review Board of each participating institution, and all participants will provide informed consent. A data safety monitoring board has been assembled to provide independent oversight of the project.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163400/2/jch14011_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163400/1/jch14011.pd

    Reactive Oxygen Species Hydrogen Peroxide Mediates Kaposi's Sarcoma-Associated Herpesvirus Reactivation from Latency

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a latent infection in the host following an acute infection. Reactivation from latency contributes to the development of KSHV-induced malignancies, which include Kaposi's sarcoma (KS), the most common cancer in untreated AIDS patients, primary effusion lymphoma and multicentric Castleman's disease. However, the physiological cues that trigger KSHV reactivation remain unclear. Here, we show that the reactive oxygen species (ROS) hydrogen peroxide (H2O2) induces KSHV reactivation from latency through both autocrine and paracrine signaling. Furthermore, KSHV spontaneous lytic replication, and KSHV reactivation from latency induced by oxidative stress, hypoxia, and proinflammatory and proangiogenic cytokines are mediated by H2O2. Mechanistically, H2O2 induction of KSHV reactivation depends on the activation of mitogen-activated protein kinase ERK1/2, JNK, and p38 pathways. Significantly, H2O2 scavengers N-acetyl-L-cysteine (NAC), catalase and glutathione inhibit KSHV lytic replication in culture. In a mouse model of KSHV-induced lymphoma, NAC effectively inhibits KSHV lytic replication and significantly prolongs the lifespan of the mice. These results directly relate KSHV reactivation to oxidative stress and inflammation, which are physiological hallmarks of KS patients. The discovery of this novel mechanism of KSHV reactivation indicates that antioxidants and anti-inflammation drugs could be promising preventive and therapeutic agents for effectively targeting KSHV replication and KSHV-related malignancies

    Emergence of the rtA181T/sW172* mutant increased the risk of hepatoma occurrence in patients with lamivudine-resistant chronic hepatitis B

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Development of the hepatitis B virus (HBV) rtA181T/sW172* mutant could occur during prolonged lamivudine (LAM) therapy, conferring cross resistance to adefovir. Recent studies demonstrated an increased oncogenic potential of this mutant in NIH3T3 cells. In this study, we aimed to investigate the clinical significance of this finding.</p> <p>Methods</p> <p>Serum samples from 123 LAM-resistant chronic hepatitis B patients were submitted for virological assays. A highly sensitive amplification created restriction enzyme site (ACRES) method was devised to detect small amounts of the rtA181T mutant in the serum. Virological factors including HBV-DNA level, genotype, precore G1896A, BCP A1762T/G1764A, rtM204I/V, rtA181T and pre-S internal deletion mutations as well as clinical variables including subsequent use of rescue drugs were submitted for outcome analysis.</p> <p>Results</p> <p>By use of the highly sensitive ACRES method, the rtA181T mutant was detectable in 10 of the 123 LAM-resistant patients. During the mean follow-up period of 26.2 ± 16.4 months (range 2 to 108 months), 3 of the 10 (30.0%) rtA181T-positive patients and 2 of the 113 (1.8%) rtA181T-negative patients developed hepatocellular carcinoma (HCC). Kaplan-Meier analysis indicated that the presence of rtA181T mutation (P < 0.001), age > 50 years (P = 0.001), and liver cirrhosis (P < 0.001) were significantly associated with subsequent occurrence of HCC. All 5 HCC patients belonged to the older age and cirrhosis groups.</p> <p>Conclusions</p> <p>Emergence of the rtA181T/sW172* mutant in LAM-resistant patients increased the risk of HCC development in the subsequent courses of antiviral therapy.</p

    CD44 acts as a co-receptor for cell-specific enhancement of signaling and regulatory T cell induction by TGM1, a parasite TGF-β mimic

    Get PDF
    Long-lived parasites evade host immunity through highly evolved molecular strategies. The murine intestinal helminth, Heligmosomoides polygyrus, down-modulates the host immune system through release of an immunosuppressive TGF-β mimic, TGM1, which is a divergent member of the CCP (Sushi) protein family. TGM1 comprises 5 domains, of which domains 1-3 (D1/2/3) bind mammalian TGF-β receptors, acting on T cells to induce Foxp3+ regulatory T cells; however, the roles of domains 4 and 5 (D4/5) remain unknown. We noted that truncated TGM1, lacking D4/5, showed reduced potency. Combination of D1/2/3 and D4/5 as separate proteins did not alter potency, suggesting that a physical linkage is required and that these domains do not deliver an independent signal. Coprecipitation from cells treated with biotinylated D4/5, followed by mass spectrometry, identified the cell surface protein CD44 as a coreceptor for TGM1. Both full-length and D4/5 bound strongly to a range of primary cells and cell lines, to a greater degree than D1/2/3 alone, although some cell lines did not respond to TGM1. Ectopic expression of CD44 in nonresponding cells conferred responsiveness, while genetic depletion of CD44 abolished enhancement by D4/5 and ablated the ability of full-length TGM1 to bind to cell surfaces. Moreover, CD44-deficient T cells showed attenuated induction of Foxp3 by full-length TGM1, to levels similar to those induced by D1/2/3. Hence, a parasite protein known to bind two host cytokine receptor subunits has evolved a third receptor specificity, which serves to raise the avidity and cell type–specific potency of TGF-β signaling in mammalian cells
    corecore