2,922 research outputs found
Thermal Field Theory and Generalized Light Front Coordinates
The dependence of thermal field theory on the surface of quantization and on
the velocity of the heat bath is investigated by working in general coordinates
that are arbitrary linear combinations of the Minkowski coordinates. In the
general coordinates the metric tensor is non-diagonal. The
Kubo, Martin, Schwinger condition requires periodicity in thermal correlation
functions when the temporal variable changes by an amount
. Light front quantization fails since
, however various related quantizations are possible.Comment: 10 page
Calcium-sensing receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database
The calcium-sensing receptor (CaS, provisional nomenclature as recommended by NC-IUPHAR [44]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L-amino acids (particularly L-Trp and L-Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [74]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists [14, 106], L-amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function [34, 44, 58, 104, 105]. Indeed, L-amino acids have been identified as "co-agonists", with both concomitant calcium and L-amino acid binding required for full receptor activation [143, 51]. The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [17] or decreased extracellular ionic strength [105]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS
Calcium-sensing receptor (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database
The calcium-sensing receptor (CaS, provisional nomenclature as recommended by NC-IUPHAR [46] and subsequently updated [76]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L-amino acids (particularly L-Trp and L-Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [77]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists [14, 109], L-amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function [35, 46, 60, 107, 108]. Indeed, L-amino acids have been identified as "co-agonists", with both concomitant calcium and L-amino acid binding required for full receptor activation [147, 53]. The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [17] or decreased extracellular ionic strength [108]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS
Calcium-sensing receptor in GtoPdb v.2023.1
The calcium-sensing receptor (CaS, provisional nomenclature as recommended by NC-IUPHAR [47] and subsequently updated [77]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L-amino acids (particularly L-Trp and L-Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [78]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists [14, 110], L-amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function [36, 47, 61, 108, 109]. Indeed, L-amino acids have been identified as "co-agonists", with both concomitant calcium and L-amino acid binding required for full receptor activation [149, 54]. The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [18] or decreased extracellular ionic strength [109] while sensitivity is decreased by pathophysiological phosphate concentrations [20]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS
Calcium-sensing receptor in GtoPdb v.2021.3
The calcium-sensing receptor (CaS, provisional nomenclature as recommended by NC-IUPHAR [47] and subsequently updated [77]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L-amino acids (particularly L-Trp and L-Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [78]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists [14, 110], L-amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function [36, 47, 61, 108, 109]. Indeed, L-amino acids have been identified as "co-agonists", with both concomitant calcium and L-amino acid binding required for full receptor activation [148, 54]. The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [18] or decreased extracellular ionic strength [109]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS
Preparation of amino-substituted indenes and 1,4-dihydronaphthalenes using a one-pot multireaction approach: total synthesis of oxybenzo[c]phenanthridine alkaloids
Allylic trichloroacetimidates bearing a 2-vinyl or 2-allylaryl group have been designed as substrates for a one-pot, two-step multi-bond-forming process leading to the general preparation of aminoindenes and amino-substituted 1,4-dihydronaphthalenes. The synthetic utility of the privileged structures formed from this one-pot process was demonstrated with the total synthesis of four oxybenzo[c]phenanthridine alkaloids, oxychelerythrine, oxysanguinarine, oxynitidine, and oxyavicine. An intramolecular biaryl Heck coupling reaction, catalyzed using the Hermann–Beller palladacycle was used to effect the key step during the synthesis of the natural products
Recommended from our members
Optimizing sequencing protocols for leaderboard metagenomics by combining long and short reads.
As metagenomic studies move to increasing numbers of samples, communities like the human gut may benefit more from the assembly of abundant microbes in many samples, rather than the exhaustive assembly of fewer samples. We term this approach leaderboard metagenome sequencing. To explore protocol optimization for leaderboard metagenomics in real samples, we introduce a benchmark of library prep and sequencing using internal references generated by synthetic long-read technology, allowing us to evaluate high-throughput library preparation methods against gold-standard reference genomes derived from the samples themselves. We introduce a low-cost protocol for high-throughput library preparation and sequencing
Recommended from our members
A Program for Risk Assessment Associated with IGSCC of BWR Vessel Internals
A program is being carried out for the US Nuclear Regulatory Commission (NRC) by the Idaho National Engineering and Environmental Laboratory (INEEL), to conduct an independent risk assessment of the consequences of failures initiated by intergranular stress corrosion cracking (IGSCC) of the reactor vessel internals of boiling water reactor (BWR) plants. The overall project objective is to assess the potential consequences and risks associated with the failure of IGSCC-susceptible BWR vessel internals, both singly and in combination with the failures of others, with specific consideration given to potential cascading and common mode effects on system performance. This paper presents a description of the overall program that is underway to modify an existing probabilistic risk assessment (PRA) of the BWR/4 plant to include IGSCC-initiated failures, subsequently to complete a quantitative PRA
CMB-S4 Science Book, First Edition
This book lays out the scientific goals to be addressed by the
next-generation ground-based cosmic microwave background experiment, CMB-S4,
envisioned to consist of dedicated telescopes at the South Pole, the high
Chilean Atacama plateau and possibly a northern hemisphere site, all equipped
with new superconducting cameras. CMB-S4 will dramatically advance cosmological
studies by crossing critical thresholds in the search for the B-mode
polarization signature of primordial gravitational waves, in the determination
of the number and masses of the neutrinos, in the search for evidence of new
light relics, in constraining the nature of dark energy, and in testing general
relativity on large scales
- …