19,784 research outputs found
A study for systematic errors of the GLA forecast model in tropical regions
From the sensitivity studies performed with the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system, it was revealed that the forecast errors in the tropics affect the ability to forecast midlatitude weather in some cases. Apparently, the forecast errors occurring in the tropics can propagate to midlatitudes. Therefore, the systematic error analysis of the GLA forecast system becomes a necessary step in improving the model's forecast performance. The major effort of this study is to examine the possible impact of the hydrological-cycle forecast error on dynamical fields in the GLA forecast system
Boson Decays to Meson and Its Uncertainties
The programming new collider with high luminosity shall provide
another useful platform to study the properties of the doubly heavy meson
in addition to the hadronic colliders as LHC and TEVATRON. Under the `New Trace
Amplitude Approach', we calculate the production of the spin-singlet and
the spin-triplet mesons through the boson decays, where
uncertainties for the production are also discussed. Our results show
KeV and
KeV, where the errors are caused by
varying and within their reasonable regions.Comment: 11 pages, 5 figures, 2 tables. To be published in Eur.Phys.J.
Partition Function Zeros of a Restricted Potts Model on Lattice Strips and Effects of Boundary Conditions
We calculate the partition function of the -state Potts model
exactly for strips of the square and triangular lattices of various widths
and arbitrarily great lengths , with a variety of boundary
conditions, and with and restricted to satisfy conditions corresponding
to the ferromagnetic phase transition on the associated two-dimensional
lattices. From these calculations, in the limit , we determine
the continuous accumulation loci of the partition function zeros in
the and planes. Strips of the honeycomb lattice are also considered. We
discuss some general features of these loci.Comment: 12 pages, 12 figure
Production of the -Wave Excited -States through the Boson Decays
In Ref.[7],we have dealt with the production of the two color-singlet
-wave -quarkonium states and
through the boson decays. As an
important sequential work, we make a further discussion on the production of
the more complicated -wave excited -quarkonium states, i.e.
and (with
). More over, we also calculate the channel with the two color-octet
quarkonium states and , whose contributions to the decay width maybe at the same order of
magnitude as that of the color-singlet -wave states according to the naive
nonrelativistic quantum chromodynamics scaling rules. The -wave states shall
provide sizable contributions to the production, whose decay width is
about 20% of the total decay width . After summing up all
the mentioned -quarkonium states' contributions, we obtain
KeV, where the errors are caused
by the main uncertainty sources.Comment: 8 pages, 5 figures and 2 tables. basic formulae in the appendix are
cut off to match the published version, which can be found in v1. to be
published in Eur.Phys.J.
Variability in H9N2 haemagglutinin receptor-binding preference and the pH of fusion
H9N2 avian influenza viruses are primarily a disease of poultry; however, they occasionally infect humans and are considered a potential pandemic threat. Little work has been performed to assess the intrinsic biochemical properties related to zoonotic potential of H9N2 viruses. The objective of this study, therefore, was to investigate H9N2 haemagglutinins (HAs) using two well-known correlates for human adaption: receptor-binding avidity and pH of fusion. Receptor binding was characterized using bio-layer interferometry to measure virus binding to human and avian-like receptor analogues and the pH of fusion was assayed by syncytium formation in virus-infected cells at different pHs. We characterized contemporary H9N2 viruses of the zoonotic G1 lineage, as well as representative viruses of the zoonotic BJ94 lineage. We found that most contemporary H9N2 viruses show a preference for sulphated avian-like receptor analogues. However, the ‘Eastern’ G1 H9N2 viruses displayed a consistent preference in binding to a human-like receptor analogue. We demonstrate that the presence of leucine at position 226 of the HA receptor-binding site correlated poorly with the ability to bind a human-like sialic acid receptor. H9N2 HAs also display variability in their pH of fusion, ranging between pH 5.4 and 5.85 which is similar to that of the first wave of human H1N1pdm09 viruses but lower than the pH of fusion seen in zoonotic H5N1 and H7N9 viruses. Our results suggest possible molecular mechanisms that may underlie the relatively high prevalence of human zoonotic infection by particular H9N2 virus lineages
Global fits of simplified models for dark matter with GAMBIT – II. Vector dark matter with an s-channel vector mediator
Global fits explore different parameter regions of a given model and apply constraints obtained at many energy scales. This makes it challenging to perform global fits of simplified models, which may not be valid at high energies. In this study, we derive a unitarity bound for a simplified vector dark matter model with an s-channel vector mediator and apply it to global fits of this model with GAMBIT in order to correctly interpret missing energy searches at the LHC. Two parameter space regions emerge as consistent with all experimental constraints, corresponding to different annihilation modes of the dark matter. We show that although these models are subject to strong validity constraints, they are currently most strongly constrained by measurements less sensitive to the high-energy behaviour of the theory. Understanding when these models cannot be consistently studied will become increasingly relevant as they are applied to LHC Run 3 data
Population genetics of the highly polymorphic RPP8 gene family
Plant nucleotide-binding domain and leucine-rich repeat containing (NLR) genes provide some of the most extreme examples of polymorphism in eukaryotic genomes, rivalling even the vertebrate major histocompatibility complex. Surprisingly, this is also true in Arabidopsis thaliana, a predominantly selfing species with low heterozygosity. Here, we investigate how gene duplication and intergenic exchange contribute to this extraordinary variation. RPP8 is a three-locus system that is configured chromosomally as either a direct-repeat tandem duplication or as a single copy locus, plus a locus 2 Mb distant. We sequenced 48 RPP8 alleles from 37 accessions of A. thaliana and 12 RPP8 alleles from Arabidopsis lyrata to investigate the patterns of interlocus shared variation. The tandem duplicates display fixed differences and share less variation with each other than either shares with the distant paralog. A high level of shared polymorphism among alleles at one of the tandem duplicates, the single-copy locus and the distal locus, must involve both classical crossing over and intergenic gene conversion. Despite these polymorphism-enhancing mechanisms, the observed nucleotide diversity could not be replicated under neutral forward-in-time simulations. Only by adding balancing selection to the simulations do they approach the level of polymorphism observed at RPP8. In this NLR gene triad, genetic architecture, gene function and selection all combine to generate diversity
High-Frequency network activity, global increase in Neuronal Activity, and Synchrony Expansion Precede Epileptic Seizures In Vitro
How seizures start is a major question in epilepsy research. Preictal EEG changes occur in both human patients and animal models, but their underlying mechanisms and relationship with seizure initiation remain unknown. Here we demonstrate the existence, in the hippocampal CA1 region, of a preictal state characterized by the progressive and global increase in neuronal activity associated with a widespread buildup of low-amplitude high-frequency activity (HFA) (100 Hz) and reduction in system complexity.HFAis generated by the firing of neurons, mainly pyramidal cells, at much lower frequencies. Individual cycles ofHFAare generated by the near-synchronous (within 5 ms) firing of small numbers of pyramidal cells. The presence of HFA in the low-calcium model implicates nonsynaptic synchronization; the presence of very similar HFA in the high-potassium model shows that it does not depend on an absence of synaptic transmission. Immediately before seizure onset, CA1 is in a state of high sensitivity in which weak depolarizing or synchronizing perturbations can trigger seizures. Transition to seizure is haracterized by a rapid expansion and fusion of the neuronal populations responsible for HFA, associated with a progressive slowing of HFA, leading to a single, massive, hypersynchronous cluster generating the high-amplitude low-frequency activity of the seizure
- …