164 research outputs found

    Enhanced DCT-OFDM system with index modulation

    Get PDF
    Discrete cosine transform (DCT) based orthogonal frequency division multiplexing (OFDM), which has double number of subcarrier compared to the classic discrete fourier transform (DFT) based OFDM (DFT-OFDM) at the same bandwidth, is a promising high spectral efficiency multicarrier techniques for future wireless communication. In this paper, an enhanced DCT-OFDM with index modulation (IM) (EDCT-OFDM-IM) is proposed to further exploit the benefits of the DCT-OFDM and IM techniques. To be more specific, a pre-filtering method based DCT-OFDM-IM transmitter is first designed and the non-linear maximum likelihood (ML) is developed for our EDCT-OFDM-IM system. Moreover, the average bit error probability (ABEP) of the proposed EDCT-OFDM-IM system is derived, which is confirmed by our simulation results. Both simulation and theoretical results are shown that the proposed EDCT-OFDM-IM system exhibits better bit error rate (BER) performance over the conventional DFT-OFDM-IM and DCT-OFDM-IM counterparts

    Index Modulation Assisted DCT-OFDM with Enhanced Transceiver Design

    Get PDF
    An index modulation (IM) assisted Discrete Cosine Transform based Orthogonal Frequency Division Multiplexing (DCT-OFDM) with Enhanced Transmitter Design (termed as EDCT-OFDM-IM) is proposed. It amalgamates the concept of Discrete Cosine Transform assisted Orthogonal Frequency Division Multiplexing (DCT-OFDM) and Index Modulation (IM) to exploit the design freedom provided by the double number of available subcarrier under the same bandwidth. In the proposed EDCT-OFDM-IM scheme, the maximum likelihood (ML) detector used for symbol bits and index bits recovering is derived and the sophisticated designing guidelines for EDCT-OFDM-IM are provided. Based on the derived pairwise error event probability, a theoretical upper bound on the average bit-error probability (ABEP) of EDCT-OFDM-IM is provided over multipath fading channels. Furthermore, the maximum peak-to-average power ratio (PAPR) of our proposed EDCT-OFDM-IM scheme is derived and compared to than the general Discrete Fourier Transform (DFT) based OFDM-IM counterpart

    Leveraging Historical Medical Records as a Proxy via Multimodal Modeling and Visualization to Enrich Medical Diagnostic Learning

    Full text link
    Simulation-based Medical Education (SBME) has been developed as a cost-effective means of enhancing the diagnostic skills of novice physicians and interns, thereby mitigating the need for resource-intensive mentor-apprentice training. However, feedback provided in most SBME is often directed towards improving the operational proficiency of learners, rather than providing summative medical diagnoses that result from experience and time. Additionally, the multimodal nature of medical data during diagnosis poses significant challenges for interns and novice physicians, including the tendency to overlook or over-rely on data from certain modalities, and difficulties in comprehending potential associations between modalities. To address these challenges, we present DiagnosisAssistant, a visual analytics system that leverages historical medical records as a proxy for multimodal modeling and visualization to enhance the learning experience of interns and novice physicians. The system employs elaborately designed visualizations to explore different modality data, offer diagnostic interpretive hints based on the constructed model, and enable comparative analyses of specific patients. Our approach is validated through two case studies and expert interviews, demonstrating its effectiveness in enhancing medical training.Comment: Accepted by IEEE VIS 202

    Development of an assessment model for predicting public electric vehicle charging stations

    Get PDF
    Deploying an adequate electric vehicle (EV) charging infrastructure to support the increasing EV market is one of the major strategic goals of the U.S. government. This requires a well-designed EV charging network. The distribution and capability of the existing charging networks in terms of EV population, location, charging rate, and time of charging in San Diego is examined. A mathematical model to calculate the demand number of public Level 2 chargers universally applicable is developed. The study showed that although San Diego has sufficient chargers to accommodate the existing EV’s charging demand, the current public charging distribution network is neither well designed nor effectively used. To eliminate the waste resulting from the inefficiently designed charging infrastructure and maximize the usage rate of each charger, it is recommended that the designed optimal model to be utilized and the charging location priority be implemented to improve the availability and accessibility of charging network in the City of San Diego. Introduction: The purpose of this study is to identify current problems with the existing electric vehicle public charging stations and come up with solutions to improve the availability and accessibility of public charging stations in the City of San Diego. The objective of this research project is also to develop a mathematical model to predict the demand of EV chargers in any city including in the City of San Diego. Methods: A mix of quantitative and qualitative research methods are used to analyze the problem. The first phase of this project is to determine the study area by identifying the existing problems and issues from existing sources, and formulating hypothesis. Results: The distribution and capability of the existing charging networks in terms of EV population, location, charging rate, and time of charging in San Diego was examined. A mathematical model to calculate the demand number of public Level 2 chargers for the City of San Diego and for each zip code was developed. Among 361 tested public Level 2 chargers distributed in 34 communities, 66 chargers located at 37 charging stations distributed in 22 communities were found to be nonoperational or damaged but still operational. They accounted for 18% of the total number of tested EV charging stations and 12.7% of the total public Level 2 in San Diego. The model tested using data from San Francisco Bay Area, and Los Angeles County matched well to the predictions. Conclusions: The conclusion is that although San Diego has sufficient chargers to accommodate the existing EV’s charging demand, the current public charging distribution network is neither well designed nor effectively used. To eliminate the waste resulting from the inefficiently designed charging infrastructure and maximize the usage rate of each charger, it is recommended that the designed optimal model to be utilized and the charging location priority be implemented to improve the availability and accessibility of charging network in the City of San Diego. This model is easily applicable in the European environment since all the five significant independent variables (B/E - Battery capacity to EV Range Ratio, D-Driver Traveling Distance, β - Ratio of EV driver charges away from home, PrefL2 - percentage that EV driver prefers to charge on Level 2 stations, and TL2- duration of public Level 2 chargers’ work per day) are easy to obtain. Hence this proposed model has universal applicability. Document type: Articl

    Room-temperature van der Waals 2D ferromagnet switching by spin-orbit torques

    Full text link
    Emerging wide varieties of the two-dimensional (2D) van der Waals (vdW) magnets with atomically thin and smooth interfaces holds great promise for next-generation spintronic devices. However, due to the lower Curie temperature of the vdW 2D ferromagnets than room temperature, electrically manipulating its magnetization at room temperature has not been realized. In this work, we demonstrate the perpendicular magnetization of 2D vdW ferromagnet Fe3GaTe2 can be effectively switched at room temperature in Fe3GaTe2/Pt bilayer by spin-orbit torques (SOTs) with a relatively low current density of 1.3 10^7A/cm2. Moreover, the high SOT efficiency of \xi_{DL}~0.22 is quantitatively determined by harmonic measurements, which is higher than those in Pt-based heavy metal/conventional ferromagnet devices. Our findings of room-temperature vdW 2D ferromagnet switching by SOTs provide a significant basis for the development of vdW-ferromagnet-based spintronic applications

    A systematic review and meta-analysis of the effectiveness of social support on turnover intention in clinical nurses

    Get PDF
    BackgroundNurse turnover has become a salient issue in healthcare system worldwide and seriously compromises patient outcomes. Social support is considered an effective contributor to alleviate nurse turnover intention (TI). However, the degree of correlation between social support and nurse TI remains elusive.AimsThis study aims to evaluate the strength of the effectiveness of social support on TI among nurses as well as its potential moderators.DesignThis systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses.MethodsTo obtained qualified studies, two researchers searched Embase, PubMed, Web of science, CINAHL, CNKI, WanFang, and Chinese Medical Journal Full Text Database from inception to January 6, 2024. Meta-analysis, publication bias, and sensitivity analysis were carried out on the included studies using CMA 3.0 software, and the moderating effect was verified through meta-analysis of variance (ANOVA).ResultsA total of 38 studies were obtained, involving 63,989 clinical nurses. The comprehensive effect size of the random effect model showed a significant medium negative correlation between social support and TI among nurses (p < 0.001). The sample size and TI measurement tools significantly moderated the correlation between social support and TI (p < 0.050). However, nurse department, gender, data collection time, and social support measurement tools did not moderate the correlation between the two variables.ConclusionSocial support is negatively associated with TI in nurses. Nursing administrators and the medical community should fully recognize the importance of social support for nurses and take corresponding measures to enhance it, thereby reducing TI and ensuring the stability of the nursing team

    Genetic deletion of Rnd3 results in aqueductal stenosis leading to hydrocephalus through up-regulation of Notch signaling

    Get PDF
    Rho family guanosine triphosphatase (GTPase) 3 (Rnd3), a member of the small Rho GTPase family, is involved in the regulation of cell actin cytoskeleton dynamics, cell migration, and proliferation through the Rho kinase-dependent signaling pathway. We report a role of Rnd3 in the pathogenesis of hydrocephalus disorder. Mice with Rnd3 genetic deletion developed severe obstructive hydrocephalus with enlargement of the lateral and third ventricles, but not of the fourth ventricles. The cerebral aqueducts in Rnd3-null mice were partially or completely blocked by the overgrowth of ependymal epithelia. We examined the molecular mechanism contributing to this Rnd3-deficiency–mediated hydrocephalus and found that Rnd3 is a regulator of Notch signaling. Rnd3 deficiency, through either gene deletion or siRNA knockdown, resulted in a decrease in Notch intracellular domain (NICD) protein degradation. However, there was no correlated change in mRNA change, which in turn led to an increase in NICD protein levels. Immunoprecipitation analysis demonstrated that Rnd3 and NICD physically interacted, and that down-regulation of Rnd3 attenuated NICD protein ubiquitination. This eventually enhanced Notch signaling activity and promoted aberrant growth of aqueduct ependymal cells, resulting in aqueduct stenosis and the development of congenital hydrocephalus. Inhibition of Notch activity rescued the hydrocephalus disorder in the mutant animals

    Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures

    Get PDF
    The integration of different two-dimensional materials within a multilayer van der Waals (vdW) heterostructure offers a promising technology for high performance opto-electronic devices such as photodetectors and light sources. Here we report on the fabrication and electronic properties of vdW heterojunction diodes composed of the direct band gap layered semiconductors InSe and GaSe and transparent monolayer graphene electrodes. We show that the type II band alignment between the two layered materials and their distinctive spectral response, combined with the short channel length and low electrical resistance of graphene electrodes, enable efficient generation and extraction of photoexcited carriers from the heterostructure even when no external voltage is applied. Our devices are fast ( ~ 1 ÎĽs), self-driven photodetectors with multicolor photoresponse ranging from the ultraviolet to the near-infrared and offer new routes to miniaturized optoelectronics beyond present semiconductor materials and technologies

    Oviductal extracellular vesicles from women with endometriosis impair embryo development

    Get PDF
    ObjectiveTo investigate the influence of oviductal extracellular vesicles from patients with endometriosis on early embryo development.DesignIn vitro experimental studySettingUniversity-affiliated hospital.PatientsWomen with and without endometriosis who underwent hysterectomy (n = 27 in total).InterventionsNone.Main outcome measuresOviductal extracellular vesicles from patients with endometriosis (oEV-EMT) or without endometriosis (oEV-ctrl) were isolated and co-cultured with two-cell murine embryos for 75 hours. Blastocyst rates were recorded. RNA sequencing was used to identify the differentially expressed genes in blastocysts cultured either with oEV-EMT or with oEV-ctrl. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to identify potential biological processes in embryos that oEV-EMT affects. The functions of oEV on early embryo development were determined by reactive oxygen species (ROS) levels, mitochondrial membrane potentials (MMP), total cell numbers, and apoptotic cell proportions.ResultsExtracellular vesicles were successfully isolated from human Fallopian tubal fluid, and their characterizations were described. The blastocyst rates were significantly decreased in the oEV-EMT group. RNA sequencing revealed that oxidative phosphorylation was down-regulated in blastocysts cultured with oEV-EMT. Analysis of oxidative stress and apoptosis at the blastocysts stage showed that embryos cultured with oEV-EMT had increased ROS levels, decreased MMP, and increased apoptotic index. Total cell numbers were not influenced.ConclusionOviductal extracellular vesicles from patients with endometriosis negatively influence early embryo development by down-regulating oxidative phosphorylation

    The ENCODE Imputation Challenge: a critical assessment of methods for cross-cell type imputation of epigenomic profiles

    Get PDF
    A promising alternative to comprehensively performing genomics experiments is to, instead, perform a subset of experiments and use computational methods to impute the remainder. However, identifying the best imputation methods and what measures meaningfully evaluate performance are open questions. We address these questions by comprehensively analyzing 23 methods from the ENCODE Imputation Challenge. We find that imputation evaluations are challenging and confounded by distributional shifts from differences in data collection and processing over time, the amount of available data, and redundancy among performance measures. Our analyses suggest simple steps for overcoming these issues and promising directions for more robust research
    • …
    corecore