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Abstract 

The integration of different two-dimensional materials within a multilayer van der Waals (vdW) heterostructure 

offers a promising technology for high performance opto-electronic devices such as photodetectors and light 

sources. Here we report on the fabrication and electronic properties of vdW heterojunction diodes composed of the 

direct band gap layered semiconductors InSe and GaSe and transparent monolayer graphene electrodes. We show 

that the type II band alignment between the two layered materials and their distinctive spectral response, combined 

with the short channel length and low electrical resistance of graphene electrodes, enable efficient generation and 

extraction of photoexcited carriers from the heterostructure even when no external voltage is applied. Our devices 

are fast ( ~ 1 μs), self-driven photodetectors with multicolor photoresponse ranging from the ultraviolet to the 

near-infrared and offer new routes to miniaturized optoelectronics beyond present semiconductor materials and 

technologies.    

Introduction 

Multicolor photodetectors covering the ultraviolet (UV), visible and infrared (IR) spectral ranges have 

potential for a wide range of applications, such as optical communication [1, 2], imaging [3], 

environmental monitoring [4] and astronomical observations [5]. Furthermore, robust and miniaturized 

self-driven devices, which require no electrical power source, are of particular interest for applications in 

extreme conditions.  Self-driven multicolor photodetectors using semiconductor heterojunctions, such as 

MoS2/Si [6], CuO/Si [7], Bi2Se3/Si [8] and MoS2/GaAs heterojunctions [9], have attracted considerable 

attention recently. Photodetectors based on van der Waals (vdW) heterostructures have also been 

demonstrated [10, 11]. However, self-driven “multicolor” photodetectors that require no external power 
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source are more difficult to realize. VdW heterostructures, which can be assembled by stacking different 

two-dimensional (2D) semiconductors with different bandgaps, can combine and exploit the properties of 

the component materials within a single device. Such structures are therefore candidates for 

multifunctional optoelectronic systems with superior performance. In contrast to gapless graphene [12], 

GaSe [13] and InSe [14] and monolayers of the transition metal dichalcogenides (TMDCs) [15,16], are 

direct band gap semiconductors. High performance photodetectors based on few-layered p-type GaSe or 

n-type InSe have been reported previously [17-19]. In addition to their response to visible light, the 

photoresponse of 2D GaSe photodetectors [13] can extend into the ultraviolet (UV) region, while InSe 

nanosheets show strong near-infrared (NIR) photoluminescence (PL) emission and photoresponsivity [20]. 

These results suggest that a heterojunction based on 2D p-GaSe and n-InSe could be used for 

photodetection over a still broader spectral range.  

Although vdW heterostructures with metal electrodes have been studied extensively and demonstrate 

interesting optoelectronic and electronic properties [21, 22], their response time ranges from milliseconds 

[23] to seconds [24]. To fabricate faster, higher-performance devices, it is essential that the optically 

active layers have good interfaces and Ohmic contacts. In contrast to metal-contacted photodetectors, the 

near perfect optical transparency and the unique electronic properties of graphene make it an ideal 

electrode for multilayer, “vertical” vdW heterostructures as it can act as a short, atomically thin charge 

extraction channel with a large active area, thus enabling both fast and efficient photodetection [19]. An 

effective method to create faster vdW heterostructure photodetectors is therefore to sandwich the 

heterojunction between two layers of graphene, which act as electrodes. These heterostructures can be 

fabricated with clean interfaces free from dangling bonds, with low defect density and without the 
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Fermi-level pinning that often occurs when metal contacts are directly deposited onto a semiconductor 

surface.  

Here we report on graphene contacted p-GaSe/n-InSe heterojunctions. A typical device structure is 

shown schematically in figure 1(a). A GaSe layer is placed directly on top of the InSe sheet. This 

sequence of layers ensures that photons of energy hv < 2 eV are transmitted through the wide band gap 

energy GaSe (Eg = 2.05 eV at 300K) and can excite electron-hole pairs in the smaller band gap InSe (Eg = 

1.26 eV at 300K). This large area (~ 50 μm2) p-GaSe/n-InSe heterojunction exhibits a strong self-driven 

photoresponse ranging from the UV to NIR due to the built-in potential in the heterojunction, the type-II 

band alignment between the two layered crystals [25] and their distinctive band gap energies. Furthermore, 

using graphene rather than metals as electrodes enable a response time as short as 1.85 μs, i.e. 

significantly faster than that reported recently for van der Waals diode-like photodetectors [10, 22, 23], 

and 3 to 5 orders of magnitude faster than previously reported for photodetectors based on GaSe [13, 26, 

27] or InSe alone [19, 28], which usually have a slow response due to the presence of carrier traps in the 

relatively long active region of the detector [1, 29, 30].  

Results and discussion 

Figure 1(b) shows high-resolution transmission electron microscopy images and electron diffraction 

patterns of the β-GaSe and β-InSe layers. These have high crystalline quality and in-plane hexagonal 

symmetry. Their crystal structure consists of Se-M-M-Se (M represents Ga- and In- atoms) layers, as 

shown in the Supplementary Information figure S1. The measured in-plane lattice constants of GaSe and 

InSe are a = 0.37 and 0.4 nm, respectively. The separations of two neighboring tetralayers of GaSe and  
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Figure 1. Schematic diagram and current-voltage I-V characteristic of the p-GaSe/n-InSe heterojunction diode. (a) 

Schematic diagram of the p-GaSe/n-InSe heterojunction diode. (b) High-resolution TEM image of the GaSe (top 

left) and InSe (bottom left), respectively. Images on the right show the corresponding electron-beam diffraction 

patterns of GaSe and InSe. (c) AFM image of the device. The inset shows the thickness of the different layers. (d) 

The I-V characteristic of the p-GaSe/n-InSe heterojunction diode at room temperature. The inset shows the 

rectification ratio as a function of the source-drain voltage Vds. 

InSe are d = 0.9 and 0.84 nm, respectively. For the fabrication of the heterostructure, graphene 

microstamps were first transferred onto a fused silica substrate to form one electrode. The InSe flake was 
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mechanically exfoliated using adhesive tape from bulk single crystals onto a stamp and then transferred 

onto the graphene electrode. Using the same method, the GaSe sheet was transferred on top of the InSe 

sheet. Finally, a second graphene microstamp was transferred onto the GaSe sheet to form the top 

electrode (see also the Supplementary Information). Room temperature measurements of the electrical 

properties of the heterojunction diode reveal strong rectification in the current-voltage (I-V) 

characteristics, with a larger current passing when the p-type GaSe is positively biased relative to n-type 

InSe (figure 1(d)). The rectification ratio, defined as the ratio of the forward/reverse current, reaches ~105 

at Vds= +2/-2 V (figure 1(d), inset), demonstrating that a good p-n diode is formed within the atomically 

thin GaSe/InSe heterojunction. 

Figure 2 shows the dependence of the I-V characteristics on light intensity P ranging from 0 to 50 mW 

cm-2. The source-drain current Ids increases with increasing P (figure 2(a)) and the photocurrent Iph 

exhibits sublinear behavior, i.e. α
ph PI ∝ , where α = 0.84, 0.80 and 0.45 at source-drain voltages of Vds 

= -2, 0 and 2 V, respectively (figure 2(b)). A similar sublinear response has also been reported for other 

nanomaterials, such as ZnO [31] and GaN nanowires [32], WSe2/Graphene [30] and MoS2/WS2 

heterostructures [33]. This response suggests a decrease of the recombination time of carriers with 

increasing P due Auger recombination processes. We also note that in forward bias, due to the high 

injection of majority carriers across the junction, Auger recombination could be enhanced thus leading to 

a different power dependence of the photocurrent. 

 Figures 2(c) and (d) plot the photoresponsivity (R=Iph/PS) and detectivity (D*=RS1/2/(2eIdark)1/2) of the 

heterojunction at different applied voltages as a function of incident light intensity. Here S is the in-plane 

area (50 μm2) of the device, e is the electron charge and Idark is the dark current. Both R and D* increase  
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Figure 2. Power-dependent optoelectronic characterization at different applied voltages Vds. (a) Typical Ids curves of 

the p-GaSe/n-InSe heterojunction diode with illumination at various excitation intensities (P = 0, 0.025, 0.5, 2.5, 5, 

10, 25, 50 mW cm-2) and wavelength λ = 410 nm at room temperature. (b) Photocurrent as a function of the 

illumination intensity at different Vds (forward bias Vds = 2 V, zero bias Vds = 0 V and reverse bias Vds = -2 V). The 

solid lines are fits to the data. (c,d) Photoresponsivity R (c) and detectivity D* (d) of the heterojunction diode as a 

function of the illumination intensity P at different Vds (Vds = 2, 0, -2 V). The spot size of the laser beam is about 0.2 

mm2, which is much larger than the device size. 

 

with decreasing light intensity, consistent with the sublinear behavior of the photocurrent. The decrease of 

R with increasing P is common to many photodetectors. It suggests a decrease of the recombination time 
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of carriers with increasing P due Auger recombination processes; further, an increasing P can also 

increase the carrier transit time due to increased carrier scattering. 

The response of a photodetector is determined by a combination of several processes, including the 

excitation, recombination, and diffusion of carriers. Due to the built-in potential of the heterojunction and 

the type II band alignment (figure 3(a)), at zero bias the photocreated electrons and holes are swept in 

opposite directions across the junction into the graphene electrodes (figure 3(b)). We estimate that the 

built-in potential of the heterostructure is about 0.6 V (see Supplementary Information, figure S2). Thus 

our devices can operate at zero bias with a photoresponsivity of up to R = 21 mA W-1 with corresponding 

detectivity D* = 2.2×1012 Jones at λ = 410 nm. The systematic decrease of R and D* with increasing P 

can arise from stronger Coulomb interactions between the photogenerated carriers and enhanced 

radiative/non-radiative recombination. A reverse bias voltage increases Iph and R due to the increased 

electric field in the junction, which decreases the carrier transit time, resulting in reduced carrier 

recombination (figure 3(c)). We also note that Iph and R are strongly enhanced in applied forward biases 

beyond the open circuit voltage Voc (e.g. Ids = 0) and at high V. In this regime, due to the high injection of 

majority carriers across the junction, the influence of carrier traps is weaker and a larger number of 

photogenerated carriers are effectively extracted across the thin layers into the graphene electrodes 

(figures 3(d) and (e)). 

In our devices, a photoresponsivity of up to R = 350 A W-1 is obtained at Vds = 2 V with an illumination  

intensity P = 0.025 mW cm-2 and λ = 410 nm. This value of R is 2 to 3 orders of magnitude larger than for 

heterojunction photodetectors based on transition-metal dichalcogenides (TMDCs) such as MoS2/WSe2 

[21, 34] and MoTe2/MoS2 [23]. The corresponding detectivity is estimated to be D* = 3.7×1012 Jones,  
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Figure 3. Band alignment at the interface of the p-GaSe/n-InSe heterojunction. (a) Band alignment for isolated 

n-InSe and p-GaSe layers. Electron affinities of InSe and GaSe are χ = -4.6 and -3.7 eV, respectively. The 

conduction minimum (CB) of GaSe lies above that of InSe by ΔEc = 0.9 eV whereas the valence band (VB) edge of 

InSe lies below (ΔEv = -0.1 eV) that of the larger band gap GaSe, resulting in a type II band alignment. (b,c,d,e) 

Schematic band alignment at the interface of the heterojunction at different applied voltages Vds (reverse bias (c), 

zero bias (b) and forward bias (d,e)). VFB is the voltage corresponding to the flat band condition. 

 

which is two orders of magnitude higher than that of InGaAs/InGaP-based [35] and MoS2-based [36] 

photodetectors, and is similar to that of Si p-n junction photodetectors [37]. These high R and D* values 

indicate that the p-GaSe/n-InSe vertical heterojunction is extremely sensitive to small optical input signals. 

Furthermore, these devices can operate with no externally applied voltage, thus they have potential for 

applications that require miniaturized devices with minimal energy consumption. 

The spectral response of the p-GaSe/n-InSe heterojunction in figure 4(a) demonstrates a strong 

photoresponsivity over the range λ = 270-920 nm, from UV to NIR, under both reverse and zero biases. 

The photoresponsivity in both reverse bias, Vds = -2 V, and zero bias display a similar wavelength 
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dependence. The peak in the photoresponsivity between 400 and 500 nm corresponds to excitations 

between the pxy-like orbitals at the top of the valence band of GaSe and the minimum of the conduction 

band of InSe. The UV response at λ = 270 and 350 nm is due to interband optical absorption in the GaSe 

layer, as for the case of GaSe-based photodetectors [13, 38]. The photoresponse in the NIR wavelength 

range arises from interband transitions in the InSe layer, which has a smaller band gap of 1.26 eV at room 

temperature [20]. To elucidate the role of graphene in our measurements, we have compared the 

photocurrent spectra of GaSe- and InSe-based photodetectors with metal and graphene electrodes, see 

new figure S3 in the supplementary information. A larger photoresponse was observed in photodetectors 

based on graphene electrodes. Based on the photocurrent and incident laser power, we can determine the 

external quantum efficiency, EQE, of the photon to electron conversion (figure 4(a)). The EQE (= hcR/eλ) 

is defined as the ratio of the number of carriers collected by the electrodes to the number of incident 

photons, and is wavelength dependent. At zero bias, the device has a maximum EQE of 9.3% at λ = 410 

nm, higher than for monolayer MoS2/Si p-n diodes [39].  

To further explore the origin of the photoresponse, photocurrent maps were acquired at both zero and 

reverse biases. Figure 4(b) shows an optical microscope image of the Gr/GaSe/InSe/Gr heterostructure 

depicting the relative positions of the GaSe and InSe layers and of the graphene electrodes. The 

corresponding normalized photocurrent maps at zero and reverse biases with λ = 410 nm laser excitation 

(20 μW) are shown in figures 4(c) and (d), respectively. To distinguish the different parts of the 

heterostructure, the GaSe sheet region is outlined in green, the InSe sheet region in purple, and the top 

and bottom graphene electrodes in solid and dotted gold lines, respectively. The photocurrent map shows 

that the photosensitive region corresponds to the area where the four component layers  
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Figure 4. Spectral responsivity and normalized photocurrent maps of the p-GaSe/n-InSe heterojunction. (a) Room 

temperature photoresponsivity, R, and external quantum efficiency, EQE, as a function of illumination wavelength at 

different Vds (Vds = 0 V and Vds = -2 V) and illumination intensity P = 1 mW cm-2. The spot size of the laser beam is 

about 0.2 mm2. (b) Optical microscope image of the heterojunction; t and b refer to top and bottom graphene 

electrodes. (c,d) Normalized photocurrent maps of the Gr/GaSe/InSe/Gr device obtained by scanning a focused laser 

beam at Vds = 0 V (c) and -2 V (d) with wavelength λ = 410 nm (P = 20 μW). The green solid line outlines the GaSe 

sheet, the purple dotted line outlines the InSe sheet and the golden solid and dotted lines outline the top and bottom 

graphene electrodes, respectively. Photocurrent is observed where the 4 layers overlap. The laser beam is focused by 

a microscope objective onto a spot size of diameter of about 1.5 μm. 
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(Gr/GaSe/InSe/Gr) are superimposed and demonstrates the formation of a p-n junction across the area of 

the GaSe/InSe interface and the efficient extraction of carriers into the graphene electrodes. The weak 

photocurrent from the non-overlapping regions shows that the photogenerated carriers in the regions 

outside the p-n junction are separated and extracted less efficiently, even under a reverse bias Vds = -2 V 

(figure 4(d)). 

The response time is another important indicator of the performance of a photodetector. To assess their 

behavior in the time domain, the devices were illuminated with pulsed light generated by a light-emitting 

diode (LED) (λ = 470 nm) powered by a square-wave signal generator. As shown in figure 5(a), the 

dynamic response of the photocurrent at Vds = 0 V is described well by the equations 

( )[ ]r0 τtII(t) −−= exp1  and ( )d0 τtII(t) −= exp , where rτ = 5.97 μs and dτ = 5.66 μs are the 

rise- and decay-time constants. The even faster photoresponse at Vds = -2 V with rτ = 1.85 μs and dτ = 

2.05 μs (figure 5(b)) is due to the enhanced electric field in reverse bias. Figures 5(c) and (d) show that 

the photocurrent can be switched on and off repeatedly and reproducibly with a square-wave modulation 

of the light intensity for different laser wavelengths (λ = 270, 350, 410, 485, and 570 nm) at a power P = 

1 mW cm-2. Similar switching behavior is observed for NIR photo-excitation (λ = 920 nm) under different 

illumination intensities for both zero and reverse biases (see Supplementary Information, figure S4). 

ON/OFF ratios up to 103 are observed, demonstrating that the heterojunction can be used as a sensitive 

and fast photo-detector. The measured response times are significantly faster than those recently reported 

for van der Waals heterojunction photodetectors [10, 19, 23, 24, 40] and Si-based heterojunction 

photodetectors [41, 42]. We also note that the measured response time is limited by the RC-time of our 

instrument and hence that a faster response could be obtained by improving the measuring circuit [43, 44].
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Figure 5. Response time and photo-switching of the p-GaSe/n-InSe heterojunction diode. (a,b) Temporal 

dependence of the photocurrent and times τr and τd at Vds = 0 V (a) and Vds = -2 V (b) at room temperature. The red 

solid lines are fits to the data. (c,d) Source-drain current Ids as a function of time with photoswitching at Vds = 0 V (c) 

and Vds = -2 V (d) under illumination with different wavelengths (λ = 270, 350, 410, 485, and 570 nm) and light 

intensity P = 1 mW cm-2. The spot size of the laser beam is about 0.2 mm2.  
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Conclusion 

In conclusion, we have reported on a novel van der Waals multi-layer heterostructure that combines 

several two-dimensional van der Waals crystals, i.e. graphene and the metal monochalcogenide InSe and 

GaSe layered semiconductors. The latter present a number of features that distinguish them from the 

widely explored TMDCs. In particular, they have a type II band alignment and have distinctive spectral 

response. We have exploited these features and the low electrical resistance and optical transparency of 

monolayer graphene electrodes to fabricate a junction diode that can adsorb light over a broad spectral 

range, from the ultraviolet, visible and infrared, and in which the photo-generated carriers can be 

efficiently and quickly extracted from the InSe/GaSe heterostructure even when no external voltage is 

applied. The low or zero energy consumption, simple heterostructure design and fast response time down 

to ~ 1 μs are notable important features of these nanometer-scale devices. Our results will stimulate 

further research into the science and technology of these heterostructures, which have the potential for a 

wide range of applications. 
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