3,340 research outputs found

    Carvedilol inhibits EGF-mediated JB6 P+ colony formation through a mechanism independent of adrenoceptors

    Get PDF
    Carvedilol is reported to prevent cancers in humans and animal models. However, a molecular mechanism has yet to be established, and the extent to which other P-blockers are chemopreventive remains relatively unknown. A comparative pharmacological approach was utilized with the expectation that a mechanism of action could be devised. JB6 CI 41-5a (JB6 P+) murine epidermal cells were used to elucidate the chemopreventative properties of beta-blockers, as JB6 P+ cells recapitulate in vivo tumor promotion and chemoprevention. The initial hypothesis was that beta-blockers that are GRK/beta-arrestin biased agonists, like carvedilol, are chemopreventive. Sixteen beta-blockers of different classes, isoproterenol, and HEAT HCI were individually co-administered with epidermal growth factor (EGF) to JB6 P+ cells to examine the chemopreventative properties of each ligand. Cytotoxicity was examined to ensure that the anti-transformation effects of each ligand were not due to cellular growth inhibition. Many of the examined p-blockers suppressed EGF-induced JB6 P+ cell transformation in a non-cytotoxic and concentration-dependent manner. However, the IC50 values are high for the most potent inhibitors (243, 326, and 431 nM for carvedilol, labetalol, and alprenolol, respectively) and there is no correlation between pharmacological properties and inhibition of transformation. Therefore, the role of alpha 1- and beta 2-adrenergic receptors (AR) was examined by standard competition assays and shRNA targeting beta 2-ARs, the only beta-AR expressed in JB6 P+ cells. The results reveal that pharmacological inhibition of alpha 1- and beta 2-ARs and genetic knockdown of beta 2-ARs did not abrogate carvedilol-mediated inhibition of EGF-induced JB6 P+ cell transformation. Furthermore, topical administration of carvedilol protected mice from UV-induced skin damage, while genetic ablation of beta 2-ARs increased carvedilol-mediated effects. Therefore, the prevailing hypothesis that the chemopreventive property of carvedilol is mediated through P-ARs is not supported by this data.National Cancer Institute of the National Institutes of Health [R15CA227946]; Western University of Health Sciences; Summer Student Research Program (National Center for Toxicological Research, US. FDA)Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Silicon-Based Antenna-Coupled Polarization-Sensitive Millimeter-Wave Bolometer Arrays for Cosmic Microwave Background Instruments

    Full text link
    We describe feedhorn-coupled polarization-sensitive detector arrays that utilize monocrystalline silicon as the dielectric substrate material. Monocrystalline silicon has a low-loss tangent and repeatable dielectric constant, characteristics that are critical for realizing efficient and uniform superconducting microwave circuits. An additional advantage of this material is its low specific heat. In a detector pixel, two Transition-Edge Sensor (TES) bolometers are antenna-coupled to in-band radiation via a symmetric planar orthomode transducer (OMT). Each orthogonal linear polarization is coupled to a separate superconducting microstrip transmission line circuit. On-chip filtering is employed to both reject out-of-band radiation from the upper band edge to the gap frequency of the niobium superconductor, and to flexibly define the bandwidth for each TES to meet the requirements of the application. The microwave circuit is compatible with multi-chroic operation. Metalized silicon platelets are used to define the backshort for the waveguide probes. This micro-machined structure is also used to mitigate the coupling of out-of-band radiation to the microwave circuit. At 40 GHz, the detectors have a measured efficiency of 90%. In this paper, we describe the development of the 90 GHz detector arrays that will be demonstrated using the Cosmology Large Angular Scale Surveyor (CLASS) ground-based telescope

    Organ-targeted high-throughput in vivo biologics screen identifies materials for RNA delivery

    Get PDF
    Therapies based on biologics involving delivery of proteins, DNA, and RNA are currently among the most promising approaches. However, although large combinatorial libraries of biologics and delivery vehicles can be readily synthesized, there are currently no means to rapidly characterize them in vivo using animal models. Here, we demonstrate high-throughput in vivo screening of biologics and delivery vehicles by automated delivery into target tissues of small vertebrates with developed organs. Individual zebrafish larvae are automatically oriented and immobilized within hydrogel droplets in an array format using a microfluidic system, and delivery vehicles are automatically microinjected to target organs with high repeatability and precision. We screened a library of lipid-like delivery vehicles for their ability to facilitate the expression of protein-encoding RNAs in the central nervous system. We discovered delivery vehicles that are effective in both larval zebrafish and rats. Our results showed that the in vivo zebrafish model can be significantly more predictive of both false positives and false negatives in mammals than in vitro mammalian cell culture assays. Our screening results also suggest certain structure–activity relationships, which can potentially be applied to design novel delivery vehicles.National Institutes of Health (U.S.) (Transformative Research Award R01 NS073127)National Institutes of Health (U.S.) (Director's Innovator Award DP2 OD002989)David & Lucile Packard Foundation (Award in Science and Engineering)Sanofi Aventis (Firm)Foxconn International Holdings Ltd.Hertz Foundation (Fellowship)University Grants Committee (Hong Kong, China) (Early Career Award 125012)National Natural Science Foundation (China) (81201164)ITC (ITS/376/13)Chinese University of Hong Kong (Grant 9610215)Chinese University of Hong Kong (Grant 7200269

    Integrated Care: A Person-Centered and Population Health Strategy for the COVID-19 Pandemic Recovery and Beyond

    Get PDF
    The COVID-19 pandemic has mandated a re-imagination of how healthcare is administered and delivered, with a view towards focusing on person-centred care and advancing population health while increasing capacity, access and equity in the healthcare system. These goals can be achieved through healthcare integration. In 2019, the University Health Network (UHN), a consortium of four quaternary care hospitals in Ontario, Canada, established the first stage of a pilot program to increase healthcare integration at the institutional level and vertically with other primary, secondary and tertiary institutions in the Ontario healthcare system. Implementation of the program was accelerated during the COVID-19 pandemic and demonstrated how healthcare integration improves person-centred care and population health; therefore serving as the foundation for a health system response for the COVID-19 pandemic recovery and beyond

    Transcript-indexed ATAC-seq for precision immune profiling.

    Get PDF
    T cells create vast amounts of diversity in the genes that encode their T cell receptors (TCRs), which enables individual clones to recognize specific peptide-major histocompatibility complex (MHC) ligands. Here we combined sequencing of the TCR-encoding genes with assay for transposase-accessible chromatin with sequencing (ATAC-seq) analysis at the single-cell level to provide information on the TCR specificity and epigenomic state of individual T cells. By using this approach, termed transcript-indexed ATAC-seq (T-ATAC-seq), we identified epigenomic signatures in immortalized leukemic T cells, primary human T cells from healthy volunteers and primary leukemic T cells from patient samples. In peripheral blood CD4+ T cells from healthy individuals, we identified cis and trans regulators of naive and memory T cell states and found substantial heterogeneity in surface-marker-defined T cell populations. In patients with a leukemic form of cutaneous T cell lymphoma, T-ATAC-seq enabled identification of leukemic and nonleukemic regulatory pathways in T cells from the same individual by allowing separation of the signals that arose from the malignant clone from the background T cell noise. Thus, T-ATAC-seq is a new tool that enables analysis of epigenomic landscapes in clonal T cells and should be valuable for studies of T cell malignancy, immunity and immunotherapy
    • …
    corecore