24 research outputs found

    Construction of a Fish-like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials.

    Get PDF
    Smart actuators have many potential applications in various areas, so the development of novel actuation materials, with facile fabricating methods and excellent performances, are still urgent needs. In this work, a novel electromechanical bimorph actuator constituted by a graphene layer and a PVDF layer, is fabricated through a simple yet versatile solution approach. The bimorph actuator can deflect toward the graphene side under electrical stimulus, due to the differences in coefficient of thermal expansion between the two layers and the converse piezoelectric effect and electrostrictive property of the PVDF layer. Under low voltage stimulus, the actuator (length: 20 mm, width: 3 mm) can generate large actuation motion with a maximum deflection of about 14.0 mm within 0.262 s and produce high actuation stress (more than 312.7 MPa/g). The bimorph actuator also can display reversible swing behavior with long cycle life under high frequencies. on this basis, a fish-like robot that can swim at the speed of 5.02 mm/s is designed and demonstrated. The designed graphene-PVDF bimorph actuator exhibits the overall novel performance compared with many other electromechanical avtuators, and may contribute to the practical actuation applications of graphene-based materials at a macro scale

    Highly Reusable and Environmentally Friendly Solid Fuel Material Based on Three-Dimensional Graphene Foam

    No full text
    It is a great challenge to find a reusable solid fuel material with both high absorption capability for organic liquids and clean use. In this work, a highly reusable and environmentally friendly solid fuel material based on three-dimensional graphene foam (3D-GF) was prepared, with high absorption capability for organic liquid fuels up to over 900 times its own weight and outstanding fire resistance. This 3D-GF shows high combustion efficiency, exceeding 99%. A rather clean burning was observed without toxic gases and soot particles released, as in the case of the conventional solid fuel materials. More importantly, the reusability and mechanical stability of the material are kept almost unchanged after 10 cycles of adsorption–combustion with organic liquid fuels

    Construction of a Fish‐like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials

    No full text
    Smart actuators have many potential applications in various areas, so the development of novel actuation materials, with facile fabricating methods and excellent performances, are still urgent needs. In this work, a novel electromechanical bimorph actuator constituted by a graphene layer and a PVDF layer, is fabricated through a simple yet versatile solution approach. The bimorph actuator can deflect toward the graphene side under electrical stimulus, due to the differences in coefficient of thermal expansion between the two layers and the converse piezoelectric effect and electrostrictive property of the PVDF layer. Under low voltage stimulus, the actuator (length: 20 mm, width: 3 mm) can generate large actuation motion with a maximum deflection of about 14.0 mm within 0.262 s and produce high actuation stress (more than 312.7 MPa/g). The bimorph actuator also can display reversible swing behavior with long cycle life under high frequencies. on this basis, a fish‐like robot that can swim at the speed of 5.02 mm/s is designed and demonstrated. The designed graphene‐PVDF bimorph actuator exhibits the overall novel performance compared with many other electromechanical avtuators, and may contribute to the practical actuation applications of graphene‐based materials at a macro scale

    Facile Fabrication of Binary Nanoscale Interface for No-Loss Microdroplet Transportation

    No full text
    Binary nanoscale interfacial materials are fundamental issues in many applications for smart surfaces. A binary nanoscale interface with binary surface morphology and binary wetting behaviors has been prepared by a facile wet-chemical method. The prepared surface presents superhydrophobicity and high adhesion with the droplet at the same time. The composition, surface morphology, and wetting behaviors of the prepared surface have been systematic studied. The special wetting behaviors can be contributed to the binary nanoscale effect. The stability of the prepared surface was also investigated. As a primary application, a facile device based on the prepared binary nanoscale interface with superhydrophobicity and high adhesion was constructed for microdroplet transportation

    Bioinspired Composite Coating with Extreme Underwater Superoleophobicity and Good Stability for Wax Prevention in the Petroleum Industry

    No full text
    Wax deposition is a detrimental problem that happens during crude oil production and transportation, which greatly reduces transport efficiency and causes huge economic losses. To avoid wax deposition, a bioinspired composite coating with excellent wax prevention and anticorrosion properties is developed in this study. The prepared coating is composed of three films, including an electrodeposited Zn film for improving corrosion resistance, a phosphating film for constructing fish-scale morphology, and a silicon dioxide film modified by a simple spin-coating method for endowing the surface with superhydrophilicity. Good wax prevention performance has been investigated in a wax deposition test. The surface morphology, composition, wetting behaviors, and stability are systematically studied, and a wax prevention mechanism is proposed, which can be calculated from water film theory. This composite coating strategy which shows excellent properties in both wax prevention and stability is expected to be widely applied in the petroleum industry

    Preparation of Ultra-Smooth Cu Surface for High-Quality Graphene Synthesis

    No full text
    Abstract As grown graphene by chemical vapor deposition typically degrades greatly due to the presence of grain boundaries, which limit graphene’s excellent properties and integration into advanced applications. It has been demonstrated that there is a strong correlation between substrate morphology and graphene domain density. Here, we investigate how thermal annealing and electro-polishing affects the morphology of Cu foils. Ultra-smooth Cu surfaces can be achieved and maintained at elevated temperatures by electro-polishing after a pre-annealing treatment. This technique has shown to be more effective than just electro-polishing the Cu substrate without pre-annealing. This may be due to the remaining dislocations and point defects within the Cu bulk material moving to the surface when the Cu is heated. Likewise, a pre-annealing step may release them. Graphene grown on annealed electro-polished Cu substrates show a better quality in terms of lower domain density and higher layer uniformity than those grown on Cu substrates with only annealing or only electro-polishing treatment
    corecore