76 research outputs found

    Signal Processing of MEMS Gyroscope Arrays to Improve Accuracy Using a 1st Order Markov for Rate Signal Modeling

    Get PDF
    This paper presents a signal processing technique to improve angular rate accuracy of the gyroscope by combining the outputs of an array of MEMS gyroscope. A mathematical model for the accuracy improvement was described and a Kalman filter (KF) was designed to obtain optimal rate estimates. Especially, the rate signal was modeled by a first-order Markov process instead of a random walk to improve overall performance. The accuracy of the combined rate signal and affecting factors were analyzed using a steady-state covariance. A system comprising a six-gyroscope array was developed to test the presented KF. Experimental tests proved that the presented model was effective at improving the gyroscope accuracy. The experimental results indicated that six identical gyroscopes with an ARW noise of 6.2 °/√h and a bias drift of 54.14 °/h could be combined into a rate signal with an ARW noise of 1.8 °/√h and a bias drift of 16.3 °/h, while the estimated rate signal by the random walk model has an ARW noise of 2.4 °/√h and a bias drift of 20.6 °/h. It revealed that both models could improve the angular rate accuracy and have a similar performance in static condition. In dynamic condition, the test results showed that the first-order Markov process model could reduce the dynamic errors 20% more than the random walk model

    Determination of Advantages and Limitations of qPCR Duplexing in a Single Fluorescent Channel

    Get PDF
    Real-time (quantitative) polymerase chain reaction (qPCR) has been widely applied in molecular diagnostics due to its immense sensitivity and specificity. qPCR multiplexing, based either on fluorescent probes or intercalating dyes, greatly expanded PCR capability due to the concurrent amplification of several deoxyribonucleic acid sequences. However, probe-based multiplexing requires multiple fluorescent channels, while intercalating dye-based multiplexing needs primers to be designed for amplicons having different melting temperatures. Here, we report a single fluorescent channel-based qPCR duplexing method on a model containing the sequence of chromosomes 21 (Chr21) and 18 (Chr18). We combined nonspecific intercalating dye EvaGreen with a 6-carboxyfluorescein (FAM) probe specific to either Chr21 or Chr18. The copy number (cn) of the target linked to the FAM probe could be determined in the entire tested range from the denaturation curve, while the cn of the other one was determined from the difference between the denaturation and elongation curves. We recorded the amplitude of fluorescence at the end of denaturation and elongation steps, thus getting statistical data set to determine the limit of the proposed method in detail in terms of detectable concentration ratios of both targets. The proposed method eliminated the fluorescence overspilling that happened in probe-based qPCR multiplexing and determined the specificity of the PCR product via melting curve analysis. Additionally, we performed and verified our method using a commercial thermal cycler instead of a self-developed system, making it more generally applicable for researchers. This quantitative single-channel duplexing method is an economical substitute for a conventional rather expensive probe-based qPCR requiring different color probes and hardware capable of processing these fluorescent signals

    Design and Simulation of a MEMS Control Moment Gyroscope for the Sub-Kilogram Spacecraft

    Get PDF
    A novel design of a microelectromechanical systems (MEMS) control moment gyroscope (MCMG) was proposed in this paper in order to generate a torque output with a magnitude of 10−6 N·m. The MCMG consists of two orthogonal angular vibration systems, i.e., the rotor and gimbal; the coupling between which is based on the Coriolis effect and will cause a torque output in the direction perpendicular to the two vibrations. The angular rotor vibration was excited by the in-plane electrostatic rotary comb actuators, while the angular gimbal vibration was driven by an out-of-plane electrostatic parallel plate actuator. A possible process flow to fabricate the structure was proposed and discussed step by step. Furthermore, an array configuration using four MCMGs as an effective element, in which the torque was generated with a phase difference of 90 degrees between every two MCMGs, was proposed to smooth the inherent fluctuation of the torque output for a vibrational MCMG. The parasitic torque was cancelled by two opposite MCMGs with a phase difference of 180 degrees. The designed MCMG was about 1.1 cm × 1.1 cm × 0.04 cm in size and 0.1 g in weight. The simulation results showed that the maximum torque output of a MCMG, the resonant frequency of which was approximately 1,000 Hz, was about 2.5 × 10−8 N·m. The element with four MCMGs could generate a torque of 5 × 10−8 N·m. The torque output could reach a magnitude of 10−6 N·m when the frequency was improved from 1,000 Hz to 10,000 Hz. Using arrays of 4 × 4 effective elements on a 1 kg spacecraft with a standard form factor of 10 cm × 10 cm × 10 cm, a 10 degrees attitude change could be achieved in 26.96 s

    Ultra-Sensitive, Deformable and Transparent Triboelectric Tactile Sensor based on Micro-Pyramid Patterned Ionic Hydrogel for Interactive Human-Machine Interfaces

    Get PDF
    Rapid advances in wearable electronics and mechno-sensational human-machine interfaces impose great challenges in developing flexible and deformable tactile sensors with high efficiency, ultra-sensitivity, environment-tolerance and self-sustainability. Herein, we report a tactile hydrogel sensor (THS) based on micro-pyramid-patterned double-network (DN) ionic organohydrogels to detect subtle pressure changes by measuring the variations of triboelectric output signal without an external power supply. By the first time of pyramidal-patterned hydrogel fabrication method and laminated PDMS encapsulation process, the self-powered THS shows the advantages of remarkable flexibility, good transparency (~85), and excellent sensing performance, including extraordinary sensitivity (45.97 mV Pa-1 ), fast response (~20 ms), very low limit of detection (50 Pa) as well as high stability (36000 cycles). Moreover, with the LiBr immersion treatment method, the THS possesses excellent long-term hyper antifreezing and anti-dehydrating properties, broad environment tolerance (-20 to 60 ℃), and instantaneous peak power density of 20 ÎŒW cm-2 , providing reliable contact outputs with different materials and detecting very slight human motions. The THS shows no apparent output decline under the extreme environments of −29℃, 60℃ and even the vacuum conditions, demonstrating the excellent application potential in the field of harsh environments. By integrating the signal acquisition/process circuit, the THS with excellent self-power sensing ability is utilized as a switching button to control electric appliances and robotic hands by simulating human finger gestures, offering its great potentials for wearable and multi-functional electronic applications

    Rayleigh and shear-horizontal surface acoustic waves simultaneously generated in inclined ZnO films for acoustofluidic lab-on-a-chip

    Get PDF
    There are significant challenges in controlling uniformity of crystal inclination angles, growth orientations and film thicknesses to generate dual-mode surface acoustic waves (e.g., Rayleigh ones and shear-horizontal ones) for lab-on-a-chip applications. In this study, we demonstrate large area (up to three inches) and uniformly inclined piezoelectric ZnO films, sputtering-deposited on silicon using a glancing angle deposition method. Characterization using X-ray diffraction showed that the inclined ZnO films have an average crystal inclination angle of 29.0°, apart from the vertical (0002) orientation, at a substrate tilting angle of 30o. Reflection signals of ZnO/Si surface acoustic wave devices clearly show the generations of both shear horizontal surface acoustic waves and Rayleigh waves. The Rayleigh waves enable efficient acoustofluidic functions including streaming and transportation of sessile droplets. Excitation direction of Rayleigh waves on the acoustofluidics versus the inclined angle direction has apparent influences on the acoustofluidic performance due to the anisotropic microstructures of the inclined films. The same device has been used to demonstrate biosensing of biotin/streptavidin interactions in a liquid environment using the shear-horizontal surface acoustic waves, to demonstrate its potential for integration into a complete lab-on-a-chip device

    Flexible and integrated sensing platform of acoustic waves and metamaterials based on polyimide coated woven carbon fibers

    Get PDF
    Versatile, in situ sensing and continuous monitoring capabilities are critically needed but challenging for components made of solid woven carbon fibers in aerospace, electronics and medical applications. In this work, we proposed a unique concept of integrated sensing technology on woven carbon fibers through integration of thin film surface acoustic wave (SAW) technology and electromagnetic metamaterials, with capabilities of non-invasive, in-situ and continuous monitoring of environmental parameters and biomolecules wirelessly. Firstly, we fabricated composite materials using a three-layer composite design, in which the woven carbon fiber cloth was firstly coated with a polyimide (PI) layer followed by a layer of ZnO film. Integrated SAW and metamaterials devices were then fabricated on this composite structure. Temperature of the functional area of the device can be controlled precisely using the SAW devices, which can provide a proper incubation environment for biosampling processes. As a demonstration for an ultraviolet light sensor, the SAW device could achieve a good sensitivity of 56.86 ppm/(mW∙cm-2). On the same integrated platform, the electromagnetic resonator based on the meta-materials has been demonstrated to work as a glucose concentration monitor with a sensitivity of 0.34 MHz/(mg/dL)

    A global reference for human genetic variation

    Get PDF
    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies
    • 

    corecore