7,052 research outputs found

    Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces

    Get PDF
    Current orthopedic implants have functional lifetimes of only 10–15 years due to a variety of reasons including infection, extensive inflammation, and overall poor osseointegration (or a lack of prolonged bonding of the implant to juxtaposed bone). To improve properties of titanium for orthopedic applications, this study anodized and subsequently coated titanium with drugs known to reduce infection (penicillin/streptomycin) and inflammation (dexamethasone) using simple physical adsorption and the deposition of such drugs from simulated body fluid (SBF). Results showed improved drug elution from anodized nanotubular titanium when drugs were coated in the presence of SBF for up to 3 days. For the first time, results also showed that the simple physical adsorption of both penicillin/streptomycin and dexamethasone on anodized nanotubular titanium improved osteoblast numbers after 2 days of culture compared to uncoated unanodized titanium. In addition, results showed that depositing such drugs in SBF on anodized titanium was a more efficient method to promote osteoblast numbers compared to physical adsorption for up to 2 days of culture. In addition, osteoblast numbers increased on anodized titanium coated with drugs in SBF for up to 2 days of culture compared to unanodized titanium. In summary, compared to unanodized titanium, this preliminary study provided unexpected evidence of greater osteoblast numbers on anodized titanium coated with either penicillin/streptomycin or dexamethasone using simple physical adsorption or when coated with SBF; results which suggest the need for further research on anodized titanium orthopedic implants possessing drug-eluting nanotubes

    Precise Environmental Searches: Integrating Hierarchical Information Search with EnviroDaemon

    Get PDF
    Information retrieval has evolved from searches of references, to abstracts, to documents. Search on the Web involves search engines that promise to parse full-text and other files: audio, video, and multimedia. With the indexable Web at 320 million pages and growing, difficulties with locating relevant information have become apparent. The most prevalent means for information retrieval relies on syntax-based methods: keywords or strings of characters are presented to a search engine, and it returns all the matches in the available documents. This method is satisfactory and easy to implement, but it has some inherent limitations that make it unsuitable for many tasks. Instead of looking for syntactical patterns, the user often is interested in keyword meaning or the location of a particular word in a title or header. This paper describes some precise search approaches in the environmental domain that locate information according to syntactic criteria, augmented by the utilization of information in a certain context. The main emphasis of this paper lies in the treatment of structured knowledge, where essential aspects about the topic of interest are encoded not only by the individual items, but also by their relationships among each other. Examples for such structured knowledge are hypertext documents, diagrams, logical and chemical formulae. Benefits of this approach are enhanced precision and approximate search in an already focused, context-specific search engine for the environment: EnviroDaemon

    HMM-Based Characterization of Channel Behavior for Networked Control Systems

    Get PDF
    We study the problem of characterizing the behavior of lossy and data corrupting communication channels in a networked control setting, where the channel\u27s behavior exhibits temporal correlation. We propose a behavior characterization mechanism based on a hidden Markov model (HMM). The use of a HMM in this regard presents multiple challenges including dealing with incomplete observation sequences (due to data losses and corruptions) and the lack of a priori information about the model complexity (number of states in the model). We address the first challenges by using the plant state information and history of received/applied control inputs to fill in the gaps in the observation sequences, and by enhancing the HMM learning algorithm to deal with missing observations . Further, we adopt two model quality criteria for determining behavior model complexity. The contributions of this paper include: (1) an enhanced learning algorithm for refining the HMM model parameters to handle missing observations, and (2) simultaneous use of two well-defined model quality criteria to determine the model complexity. Simulation results demonstrate over 90\% accuracy in predicting the output of a channel at a given time step, when compared to a traditional HMM based model that requires complete knowledge of the model complexity and observation sequence

    Can conduction induce convection? The non-linear saturation of buoyancy instabilities in dilute plasmas

    Full text link
    We study the effects of anisotropic thermal conduction on low-collisionality, astrophysical plasmas using two and three-dimensional magnetohydrodynamic simulations. For weak magnetic fields, dilute plasmas are buoyantly unstable for either sign of the temperature gradient: the heat-flux-driven buoyancy instability (HBI) operates when the temperature increases with radius while the magnetothermal instability (MTI) operates in the opposite limit. In contrast to previous results, we show that, in the presence of a sustained temperature gradient, the MTI drives strong turbulence and operates as an efficient magnetic dynamo (akin to standard, adiabatic convection). Together, the turbulent and magnetic energies contribute up to ~10% of the pressure support in the plasma. In addition, the MTI drives a large convective heat flux, ~1.5% of rho c_s^3. These findings are robust even in the presence of an external source of strong turbulence. Our results on the nonlinear saturation of the HBI are consistent with previous studies but we explain physically why the HBI saturates quiescently by re-orienting the magnetic field (suppressing the conductive heat flux through the plasma), while the MTI saturates by generating sustained turbulence. We also systematically study how an external source of turbulence affects the saturation of the HBI: such turbulence can disrupt the HBI only on scales where the shearing rate of the turbulence is faster than the growth rate of the HBI. In particular, our results provide a simple mapping between the level of turbulence in a plasma and the effective isotropic thermal conductivity. We discuss the astrophysical implications of these findings, with a particular focus on the intracluster medium of galaxy clusters.Comment: 18 pages, 14 figures. Submitted to MNRA

    Leveraging Cloud Computing to Improve Storage Durability, Availability, and Cost for MER Maestro

    Get PDF
    The Maestro for MER (Mars Exploration Rover) software is the premiere operation and activity planning software for the Mars rovers, and it is required to deliver all of the processed image products to scientists on demand. These data span multiple storage arrays sized at 2 TB, and a backup scheme ensures data is not lost. In a catastrophe, these data would currently recover at 20 GB/hour, taking several days for a restoration. A seamless solution provides access to highly durable, highly available, scalable, and cost-effective storage capabilities. This approach also employs a novel technique that enables storage of the majority of data on the cloud and some data locally. This feature is used to store the most recent data locally in order to guarantee utmost reliability in case of an outage or disconnect from the Internet. This also obviates any changes to the software that generates the most recent data set as it still has the same interface to the file system as it did before update
    • 

    corecore